ارزیابی اثر محلول‌های اسیدسالیسیلیک بر خصوصیات زراعی و فیزیولوژیکی ارقام ذرت (Zea maize)

محموٓد میرزاخانیا

1) گروه علم کشاورزی، دانشگاه آزاد اسلامی، واحد فاراوان
2) دانشجوی علم کشاورزی، دانشگاه یزد، دوره ازای

تاریخ دریافت: ۱۳۹۷/۰۷/۱
تاریخ پذیرش: ۱۳۹۷/۰۷/۱۸

چکیده

مقدمه: گیاهان زراعی ممکن است در مکانی از دوره رشد خود با یکی از تنوع‌های محیطی از جمله کمبی، شوری، گرما و غیره برخورد نمایند که به‌صورت طبیعی موجب کاهش عملکرد آنها می‌شود. از علوم تحقیق پایه‌ها به تنوع در گیاهان می‌توان به تولید انواع مختلفی از ترکیبات با نام علوم محلول‌های سازگاری نام گذاری کرد. اسیدسالیسیلیک از گروه ترکیبات فنولی در گیاهان است و یک شیه هورمون و تنظیم کننده رشد گیاهی به حساب می‌آید و تنظیم رشد و نمو گیاهی می‌کند.

مواد و روش‌ها: این آزمایش به سال زراعی ۱۳۹۰ به‌صورت کرت‌های دیوار خرد شده در قالب طرح یک‌نمونه کامل تصادفی با سه تکرار در مزرعه دانشگاه پاینویار اراک اجرا شد. تنظیم عوامل اصلی در سطح (I0= آب، I1= آبیاری با نیاز آبی گیاه (شاده)، I2= آبیاری به میزان ۸۰ درصد نیاز آبی گیاه و I3= آبیاری به میزان ۶۰ درصد نیاز آبی گیاه) در کرت‌های اصلی و ارقام مختلفی در حالت تغلب به‌عنوان عامل فرعی در دو سطح (۰ و ۳۰۰ پی‌پیام (S) (در هکتار) در کرت‌های فرعی شناخته شدند. سطح پایان ارتفاع گیاه، قطر ساقه، تعداد برگ‌ساز، تعداد پلاک در برگ، عملکرد بیولوژیکی گیاه و هدایت الکتریکی شبهر سلولی مورد ارزیابی قرار گرفتند.

*نویسنده مسئول: mmirzakhani@iau-farahan.ac.ir
نتایج: تناوب نشان داد که اثر سطوح مختلف تنش آبی بر صفات ارتفاع گیاه تعداد بلای در بوته، عملکرد بیولوژیکی گیاه و هدایت الکتریکی شیره سلولی معنی‌دار بود. همچنین اثر تیمار ارقام مختلف در تنش نیز بر صفات ارتفاع گیاه، قطر ساقه، تعداد برگ سری، عملکرد بیولوژیکی گیاه و هدایت الکتریکی شیره سلولی معنی‌دار بود. در بین سطوح تیمار تنش آبی، بیشترین عملکرد بیولوژیکی شیره سلولی می‌باشد. تیمار C370 در هر تیمار معنی‌دار نیز بود. در بین ارقام تیمار، در تیمار C370 نیز، بیشترین عملکرد بیولوژیکی گیاه و هدایت الکتریکی شیره سلولی می‌باشد.

نتیجه‌گیری: در این مطالعه، تنش آبی به عنوان یکی از عوامل اصلی در حال کاهش می‌باشد. در اینجا، تنش آبی و تعداد پرورش به یک عوامل وابسته به هم گردیده شد. در تنش آبی، عملکرد بیولوژیکی گیاه و هدایت الکتریکی شیره سلولی معنی‌دار بود. به طور کلی عملکرد بیولوژیکی در میانگین سه تیمار، در هر تیمار معنی‌دار نیز بود. در این آزمایش، عملکرد بیولوژیکی ارقام حساس در بخش سه، و این ارقام در بخش سه حساس بود.

واژه‌های کلیدی: تنش آبی، عملکرد بیولوژیکی، هدایت الکتریکی، هیپرید

مقدمه

دریافت مقاله علمی یک گیاه زراعی دو منظوره (دانه‌های و علف‌های) سوئیس گیاه زراعی مهم در جهان است که در تغذیه انسان و دام نقش مهمی دارد. علوفه زعفران نشان دهنده ارزی بار از دام تولید می‌گردد.

یکی از اهمیت‌های ناگهانی که به کاهش عمکرد آنها می‌شود، از عملکرد تیمار یکی از مصرف‌های اصلی مصرف می‌باشد. به عنوان مثال، به کاهش عمکرد آنها می‌شود. این ترکیبات عموماً دارای زون مولکولار پایین هستند. از آن جمله می‌توان ترکیبات مایل به پرولین، کلاسین، نتین، اسیدسالسیلیک و غیره را نام برد که از نظر ترتیبی سیستم‌دایی، حفظ استحکام غشاء و حفظ نسبت آنزیم‌ها و پروتئین‌ها موجب بهبود وضعیت عمومی گیاه می‌گردد (Ashraf and Foolad, 2007).

اسیدسالسیلیک از گروه ترکیبات فنولی در گیاهان است و یک شبه هورمون و تنظیم‌کننده گیاهی به حساب می‌آید. نقش مهمی را در تنظیم رشد و نمو گیاه ایفا می‌کند (Raskin, 1992).
نشريه تحقیقات کاربردی اکوفيسيولوژي گياهی / دوره پنجم، شماره اول، بهار و تابستان 97

گلدهی، جلوگیری از سنتز اتیلن، تأثیر در پات و باقی نشدن روندها و تنفس از دیگر نشتهای مهم آن به‌شمار می‌رود (El-Tayeb et al., 2005). اسیدسالسیلیک بیکی از یک سیگنال دهنده مهم است که باعث حکم العمل گیاه در پاراد نشته‌های محیطی می‌شود. این ماده همانند بک آنی اکسیدانت غیرانتی‌می نش می‌گردد در تهیه و تهیه انرژی فیزیولوژیکی در گیاه ایفا می‌کند (Arfan et al., 2005). علاوه بر این اسیدسالسیلیک به‌عنوان یک مولکول پیام رسان در مقاومت اکتساب سیستمک‌های شناخته می‌شود (Raskin, 1992). آنی انگیز نش خشکی و اسیدسالسیلیک بر روی شرایط و عملکرد عضله و دانه ذرت رقم دابل کراس 75 پربرسي کردند. آن ها اگر دردز که شکی باعث کاهش کلروفیل محتوی نسبی آب، وقوع و خشک عضله و افزایش نشته‌های گردید. در مقابل، اسیدسالسیلیک سبب افزایش معنی‌دار کلروفیل محتوی نسبی آب، وقوع خشک عضله و کاهش معنی‌دار نشته‌های گردید و بیشترین تأثیر مربوط به تامار خسائدن بذر بود. همچنین از اسیدسالسیلیک بر بهبود رشد و افزایش عملکرد در هر دو شرایط نش و غیرنشته محصول بود و به‌طور معنی‌دار باعث افزایش عملکرد دانه گردید (Mehrabian-moghaddam et al., 2011).

مقدار گرز نمودن افزودن اسیدسالسیلیک به محلول رشد آکیسی دات به تزویه تولید عوامل آنی اکسیدان. باعث افزایش تحمیل به سرم و گردید (Janda et al., 1999). در این شرایط دیگری غلتخت 1/6 میلی‌مول از اسیدسالسیلیک سبب ایجاد مقاومت به سوزی در ذرت گردید (Hussein et al., 2007). گروه شد که استفاده از اسیدسالسیلیک با غلتخت‌های 10-1 میلی‌مول به‌صورت خسائدن بذری و اسپری بروی دانه‌های خرید آتار نشته خشکی را در این گیاه کاهش می‌دهد (Korkmaz et al., 2007). استفاده از اسید السالسیلیک به‌صورت اسپری برگی بر روی بروگاه خیر (Yildirim et al., 2008) و درت (Yildiran 2004) به‌طور معنی‌دار باعث افزایش عملکرد دانه گردیده، باعث افزایش نشته‌ها و ریشه و زیاد شکاف‌های ریشه و ریشه و زیاد شکاف‌های صاف‌ساز و تعداد بگر را در شرایط شوری نسبت به شاهد افزایش داد (Khodary, 2004).

از آزمایشی جهت بررسی تأثیر جریان اسیدسالسیلیک بر عملکرد و اجزای عملکرد دانه لوبای چشمین بیلبی رقم برگوی تحت نش در که انجام شده است و نتایج از آن بود که پایین‌تری با اسیدسالسیلیک باعث افزایش طول‌غلاف، تعداد غلاف، تعداد دانه، وزن سبب دانه در غلاف‌های شاخص Pak اصلی و تعداد ریشه و تعداد دانه، وزن سبب دانه در غلاف‌های شاخص (Mehri et al., 2011) به‌طور مثبت بررسی بیشتر تیمار اسید سالسیلیک بر جوانی زنی، فعالیتی آزمایشی آنتی‌اکسیدان و منیزان پرکپیداسیون لبی‌دهی‌ای غنی‌گاهی گندم در نشگی شوری، آزمایشی انجام دادند که در ان بذرگاه‌های گندم، رقم و تعداد سبب ارائه‌ای‌ها در محلول‌های 0/1 و 0/5/
ارزیابی اثر محلول پاشی اسیدسالیسیلیک بر خصوصیات زراعی و ...

میلی‌مولار اسیدسالیسیلیک منتقل کردن، نتایج نشان داد که نشان شوری باعث کاهش جوانه‌زنی در بذرهای گندم شده، به طوری که افزایش ۲۰۰ میلی‌مولار نمک سبب کاهش ۱۲/۲ درصد جوانه‌زنی نسبت به نمونه شاهد شد (Dolat Abadi et al., 2008). هدف از انجام آزمایش ارزیابی محلول مایع اسیدسالیسیلیک بر خصوصیات زراعی و فیزیولوژیکی اراق ذرت در شرایط کم آبیاری در اراک بود.

مواد و روش‌ها

این آزمایش در سال زراعی ۱۳۹۰ در مزرعه آموزشی و تحقیقاتی دانشگاه پیام‌نور واحده اراک با خاک زراعی شنی لومی، اجرا گردید. از خصوصیات آب و هوایی این منطقه، ناپاسخی‌ها نسبتاً ملایم و زمستانی‌های سرد است. آزمایش به صورت گروه خرد شده در قالب طرح یک‌پایه بلوندهای کاملاً تصادفی با به‌کارگیری انجام شد. هر گروه با توجه به تنها آتی حاصل در سطح (V1 = آبی‌ای براساس نیاز اصلی گیاه) و (V2 = آبی‌ای به درصد ۲۰، V3 = آبی‌ای به درصد ۴۰ و Sa= Control) گرفته از فرعي به محلول یا مایع اسیدسالیسیلیک در دو سطح بی‌پرید در هكتار اختصاص یافته. هر گروه آزمایش شامل چهار خط کشت به طول بین ۵ تا ۲۰ متر، فاصله بین ردیف‌های ۵۰ سانتی‌متر و فاصله بین رده‌ها ۲۰ سانتی‌متر (تراکم ۸۰۰۰۰) بود. با توجه به نتایج آزمایش خاک مزرعه محل مورد نظر (جدول ۱) عناصر نیتروژن و فسفر حاصل به‌ترین به‌مدت ۴۰۰ و ۱۵۰ کیلوگرم در هکتار از کودهای اوره و سوپرفسات تری‌بل به خاک مزرعه اضافه شد.

جدول ۱- خصوصیات فیزیکی و شیمیایی خاک (عمق ۰-۳۰ سانتی‌متر)

<table>
<thead>
<tr>
<th>شیمیایی خاک</th>
<th>PhD</th>
<th>K (ppm)</th>
<th>N (%)</th>
<th>P (ppm)</th>
<th>Soil Texture</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>Sand (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بافت خاک</td>
<td></td>
<td>۲۴۰</td>
<td>۰/۰۴</td>
<td>۱۰</td>
<td>۴۰</td>
<td>۴۰</td>
<td>۳۳</td>
<td>۳۷</td>
</tr>
</tbody>
</table>

مداوم به علی‌فهادی یه‌ر به موقع و به روشی درست انجام شد. در زمان برداشت تعداد ۲۰ بوته از هر کرت آزمایشی با در نظر گرفتن اثرات حاشیه‌ای به‌طور کامل تصادفی انتخاب شدند و صفاتی چون ارتفاع گیاه، قطر ساقه، تعداد برگ شبنم، تعداد بخش، تعداد بال در بوته، عملکرد مولیژنی گیاه و هدایت الکتریکی...
نشريه تحقيقات كاربردي اکوفيسيولوژي گياهی / دوره پنجم، شماره اول، بهار و تابستان 79

شيده سلولي ادازهگي و زربا نمایي اعمال نتش (حمج آب مصرفي بر حسب متر مکعب) با

استفاده از فرمول زير محاسبه گردید:

200 x [{دبی آب ورودی} / (ارتفاع تبخير از نتش x حجم تبخير x راديان آب‌گي x مساحت کرت x ضریب گياهی)]

در این فرمول برای جاگذاري اعداد، از نتش تبخير کلاس A و از آماره روزانه ایستگاه هوئيتي ارك استفاده گردید. دربي آب ورودي سفوني‌ها محاسبه شد و ضریب گياهی از جدول کتاب
نیاز آب گياهان در ايران بهدست آمد (2007). سپس با توجه به اعداد

اجته تعيين هدایت الکتریکي شيره سلولی ابتدا به تعداد کرت‌هاي آزمایش لوله‌های آزمایشگاها

15 ميلي‌ليتری انتخاب و داخل هر يک 10 ميلي‌ليتر محلول مانیتول پا پانسته اسپزی-2-آنتسفر

ریخته شد. سپس ده ديسک به قطر يك سانتي‌متر از پهناي پرگه گياهان هر تيمار تهيه و به مدت
24 ساعت داخل لوله‌های آزمایش قرار داده شد. پس از گذشت مدت زمان لازم مقدار هدایت الکتریکي

محلول هر لوله آزمایش بطور جداگانه با دستگاه هدایت سنجه الکتریکي اندازه‌گیری و تبیین شد. محلول
هر لوله آزمایش كه هدایت الکتریکي بيشتري را نشان دهد، بيانگر تبخير بيشتر غشاي سلولی بى اعث

گياهان موجود در آن است (2007). همين‌چين برای تعيين عملکرد علوفه، در هر
کرت يک از جذف اثرات جابجایي از دوخط مياي مساحت 2 مترمربع برداشت، توزين و عملکرد علوفه
هرکرت برحسب كيلوگرم در هكتار محاسبه و نتیجه شد. پس از تجزيه داده‌ها، ميانگين‌ها با آزمون
جندامنه‌ي داکن در سطح احتمال بين درصد مقایسه شدند. همين‌چين كليه ضراب همبستگي بين

صفات مورد مطالعه، محاسبه و معني‌دار بودن آنها به‌وسيلة نرم‌افزار Mstat-ک تعيين گردید.

نتياج و بحث

ارتفاع گياه در جدول تجزيه واريانس اثر تيمار نتش آب و ارقام مختلف درت از صرف ارتفاع يتوبه در

سطح يک درصد معنی‌دار شد (جدول 2). در بین ارقام مورد بررسی، بيشترین ارتفاع گياه با ميانگين
S.C704/15 سانتي‌متر و كمترین آن با ميانگين S.C370/16 سانتي‌متر به‌ترتیب متعمل به ارقام C704

سبت به ساب ارقام از همه ديسک‌تر مياشي. با مقايسه ميانگين‌هاي اهای متقابل سه‌گانه بيشترین

ارتفاع گياه با ميانگين 169/4 سانتي‌متر مربوط به تيمار آب‌گي و هم‌ديل + مصرف اسيداسیلیک + کمترین آن با ميانگین 94/2 سانتي‌متر مربوط به تيمار آب‌گي براساس 60 درصد

نياز آب گياه + هبیدر 370 + مصرف اسيداسیلیک بود (جدول 4).
جدول ۲- تجزیه واریانس (میانگین مربعات) صفات ذرت تحت شرایط تنش آبی و کاربرد اسیدسالیسیلیک

<table>
<thead>
<tr>
<th>مربع تغییرات (S.O.V.)</th>
<th>درجه آزادی (DF)</th>
<th>ارتفاع گیاه (Plant height)</th>
<th>قطر ساقه (Stem diameter)</th>
<th>تعداد گره سبز (Number of green leaf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پتکار (Replication)</td>
<td>۲</td>
<td>۱۹۴۰.۷۹*</td>
<td>۰.۰۹*</td>
<td>۱.۲۸*</td>
</tr>
<tr>
<td>تنش آبی (W)</td>
<td>۲</td>
<td>۶۲۲۳.۶۸**</td>
<td>۰.۱۷**</td>
<td>۰.۹۱*</td>
</tr>
<tr>
<td>خطای (ای) (a)</td>
<td>۴</td>
<td>۳۵۲۷.۷۹</td>
<td>۰.۲۸</td>
<td>۰.۸۱*</td>
</tr>
<tr>
<td>هیبرید (V)</td>
<td>۴</td>
<td>۱۳۳۷.۱۱**</td>
<td>۰.۱۲**</td>
<td>۰.۵۰*</td>
</tr>
<tr>
<td>خطای (ای) (b)</td>
<td>۱۲</td>
<td>۲۰۲.۷۳</td>
<td>۰.۱۵</td>
<td>۰.۳۷*</td>
</tr>
<tr>
<td>اسیدسالیسیلیک (S)</td>
<td>۱</td>
<td>۳۸.۶۷*</td>
<td>۰.۰۷**</td>
<td>۰.۹۰*</td>
</tr>
<tr>
<td>تنش آبی × اسیدسالیسیلیک (W × S)</td>
<td>۲</td>
<td>۶۱.۱۱**</td>
<td>۰.۳۳**</td>
<td>۰.۴۷*</td>
</tr>
<tr>
<td>هیبرید × اسیدسالیسیلیک (V × S)</td>
<td>۲</td>
<td>۳۳.۲۲*</td>
<td>۰.۲۲*</td>
<td>۰.۳۶*</td>
</tr>
<tr>
<td>تنش هیبرید × اسیدسالیسیلیک (V × S)</td>
<td>۴</td>
<td>۱۵.۸۳*</td>
<td>۰.۱۷*</td>
<td>۰.۰۲*</td>
</tr>
<tr>
<td>خطای (ای) (c)</td>
<td>۱۸</td>
<td>۵۰.۰۴۰۶</td>
<td>۰.۰۴۶۰</td>
<td>۰.۳۸*</td>
</tr>
<tr>
<td>ضریب تغییرات (CV (%))</td>
<td>-</td>
<td>۵.۱۱۱۰۷</td>
<td>۱۱.۷۸۱۰۷</td>
<td>۵.۹۷۱۰۷</td>
</tr>
</tbody>
</table>

*: و **: بی‌توجهی به اختلاف معنی‌دار است و اختلاف معنی‌دار در سطح احتمال برابر یک درصد.

ns, * and **: non-significant difference, significant difference at the level of five and one percent probability, respectively.

به‌نظر می‌رسد که در این آزمایش با ایجاد محدودیت آبی روند کاهشی ارتفاع بوته مشاهده شد. با کاهش میزان رطوبت قابل دسترس گیاه، معمولاً رشد و تخمین سلولی نیز کاهش خواهد یافت و در نتیجه گیاه ارتفاع کمتری تولید می‌نماید. همچنین تنش آبی از طریق کاهش سرعت رشد گیاه باعث کاهش ارتفاع گیاه می‌شود. هرچه اعمال تنش زودتر، افزایش گردید؛ تأثیر بیشتری بر افزایش گیاه دارد. نتایج محققان نشان داد که بین سطح مختلف تیمار تنش آبی و تیمار اسیدسالیسیلیک از نظر ارتفاع بوته
میانگین‌های که در هر ستون دارای حرف مشترک می‌باشند، براساس آزمون LSD در سطح احتمال 1% درصد اختلاف معنی‌داری دارند.

Means in each column fallowed by similar letters are not significantly different at the %5 probability level (LSD Test).
جدول 4- مقایسه میانگین های اثر متفاوت تنش آبی، رقم و اسیدسالیسیلیک بر خصوصیات زراعی درت

<table>
<thead>
<tr>
<th>تعیین‌نامه</th>
<th>ارتفاع گیاه (cm)</th>
<th>قطر ساقه (cm)</th>
<th>تعداد برگ سبز</th>
</tr>
</thead>
<tbody>
<tr>
<td>W0 V0 S0</td>
<td>133.8 d</td>
<td>1.56 e-f</td>
<td>9.33 b-e</td>
</tr>
<tr>
<td>W0 V1 S0</td>
<td>136.1 c</td>
<td>1.60 e-f</td>
<td>9.56 c-e</td>
</tr>
<tr>
<td>W0 V2 S0</td>
<td>166.6 a</td>
<td>2.16 b-c</td>
<td>11.03 ab</td>
</tr>
<tr>
<td>W0 V3 S0</td>
<td>169.4 a</td>
<td>1.93 b-c</td>
<td>10.83 ab</td>
</tr>
<tr>
<td>W0 V4 S0</td>
<td>168.0 a</td>
<td>2.06 b-d</td>
<td>10.60 a-c</td>
</tr>
<tr>
<td>W0 V5 S0</td>
<td>170.5 a</td>
<td>2.03 b-d</td>
<td>11.00 ab</td>
</tr>
<tr>
<td>W1 V0 S0</td>
<td>124.1 de</td>
<td>1.66 d-f</td>
<td>9.90 b-e</td>
</tr>
<tr>
<td>W1 V1 S0</td>
<td>117.5 e</td>
<td>1.60 e-f</td>
<td>9.16 e</td>
</tr>
<tr>
<td>W1 V2 S0</td>
<td>144.5 bc</td>
<td>2.03 b-d</td>
<td>10.90 ab</td>
</tr>
<tr>
<td>W1 V3 S0</td>
<td>135.9 cd</td>
<td>2.20 b</td>
<td>10.20 a-e</td>
</tr>
<tr>
<td>W1 V4 S0</td>
<td>150.6 b</td>
<td>1.96 b-e</td>
<td>11.37 a</td>
</tr>
<tr>
<td>W1 V5 S0</td>
<td>153.6 b</td>
<td>1.60 ef</td>
<td>10.90 ab</td>
</tr>
<tr>
<td>W2 V0 S0</td>
<td>99.77 f</td>
<td>1.16 g</td>
<td>9.26 de</td>
</tr>
<tr>
<td>W2 V1 S0</td>
<td>94.13 f</td>
<td>1.33 fg</td>
<td>9.03 e</td>
</tr>
<tr>
<td>W2 V2 S0</td>
<td>134.9 cd</td>
<td>1.60 ef</td>
<td>10.93 ab</td>
</tr>
<tr>
<td>W2 V3 S0</td>
<td>130.9 cd</td>
<td>2.60 a</td>
<td>10.63 a-c</td>
</tr>
<tr>
<td>W2 V4 S0</td>
<td>131.5 cd</td>
<td>1.76 c-e</td>
<td>10.13 b-e</td>
</tr>
<tr>
<td>W2 V5 S0</td>
<td>130.3 d</td>
<td>1.76 c-e</td>
<td>10.40 a-d</td>
</tr>
</tbody>
</table>

یعنی دارای نداهنده‌یانی است.

Means in each column followed by similar letters are not significantly different at the 5% probability level (LSD Test).

در پژوهشی ارقام مختلف ذرت و سطوح مختلف مصرف اسیدسالیسیلیک از نظر ارتفاع گیاه در گروه‌های آماری متقابل قرار گرفتند. بطوری که بیشترین و کمترین مقادیر ارتفاع گیاه‌های ذرت با میانگین 37/47 میلی‌متر و 27/21 سانتی‌متر، بیشترین مربوط به تیمار رقم 50 درصد مصرف به میزان یک میلی‌متر اسیدسالیسیلیک و تیمار رقم 50 درصد مصرف اسیدسالیسیلیک بود (Zarei et al., 2012). محققان اظهار داشتند که در شرایط بدون تنش سطوح تیمار اسیدسالیسیلیک تأثیر معنی‌داری بر ارتفاع بونه نداشتند، ولی در شرایط تنش خشکی کلیه سطوح تیمار اسیدسالیسیلیک سبب افزایش ارتفاع گیاه گردیدند و بیشترین افزایش مصرف به تیمار خیس‌داندن بذر با میانگین 121 سانتی‌متر و تیمار

150
خشندن بذر + محلول پاشی در مرحله گردش افشانی با میانگین 71/8/1 سانتی‌متر به میزان 14 درصد
بود. تیمار شاهد با میانگین 87/8 سانتی‌متر کمترین مقدار ارتفاع بونه را داشت. (Moghaddam et al., 2011).
گزارش شده است که اسدسالسیلیک باعث افزایش تقسیم سلولی درون مریست گیاه‌ها می‌شود و همچنین رشد گیاه را بهبود می‌بخش (2003).

قطر ساقه: از طرفی تهم‌های مورد بررسی، قطر ساقه در سطح آماری یک درصد تحت تأثیر ارقام مختلف ذری قرار گرفت و این نتیجه با محلول پاشی اسدسالسیلیک غیرمعنی‌داری داشت (جدول 2). در هر سطح مختلف مصرف اسدسالسیلیک نفاوت معنی‌داری از نظر قطر ساقه مشاهده شد، ولی تیمار مصرف 300 یوی ام اسدسالسیلیک با میانگین 18/5 سانتی‌متر و تیمار عدم مصرف اسدسالسیلیک با میانگین 18/7 سانتی‌متر به ترتیب بیشترین و کمترین قطر ساقه را به خود اختصاص دادند (جدول 2). در جدول مقایسه میانگین‌های اثرات مختلف، بیشترین مقدار قطر ساقه با میانگین 60 درصد نیاز آی گیاه + هیبرید + Apex مصرف اسدسالسیلیک و کمترین مقدار آن با میانگین 1/6 سانتی‌متر مربوط به تیمار آبی براساس S.C370 و عدم مصرف اسدسالسیلیک بود (جدول 3).

پای درخت طول دوره رشد و نحو ارقام ذری معمولاً حجم رشدی گیاه و ارتفاع بونه نیز افزایش می‌یابد و به همین خاطر گیاه باید در ارزیابی قطر ساقه بیشتری نیز تا آن‌گونه قرار داده شود تا نتایج آزمایش مذکورانگر در صورت تغییر کاهش در قطر ساقه بیشتر یا کاهش در قطر ساقه بیشتر با میانگین طراح وکار اندازی شود. تیمار با میانگین 46/1 و 45/4 سانتی‌متر مصرف اسدسالسیلیک در سطح آماری یک درصد معنی‌داری داشت. در هر سطح تیمار ای، بیشترین و کمترین مقدار قطر ساقه با میانگین 37/1 و 37/2 سانتی‌متر به ترتیب مربوط به تیمار شاهد و تیمار قطع ای، به مدت شش روز بود. همچنین بیشترین و کمترین مقدار قطر ساقه با میانگین 40/3 و 33/3 سانتی‌متر به ترتیب مربوط به تیمار محلول پاشی اسدسالسیلیک (با غلظت یک میلی‌مولار) و تیمار عدم مصرف اسدسالسیلیک بود (Bayat et al., 2011). سابر بی‌هوشگران بیان داشتند که بین سطح مختلف تیمار مصرف اسدسالسیلیک و تیمار شاهد از نظر قطر ساقه ذری اختلاف آماری معنی‌داری وجود نداشت و البته تیمار ای، بیشترین و کمترین مقدار قطر ساقه با میانگین 46/18 و 46/18 سانتی‌متر و 40/45 و 40/45 میلی‌متر به ترتیب مربوط به تیمار (شیشه شویی + مصرف یک میلی‌مولار اسدسالسیلیک) و تیمار (شیشه شویی + مصرف یک میلی‌مولار اسدسالسیلیک) بود (Levent Tuna et al., 2007).
ازربایان اثر محلول‌یابی اسیدسالیسیلاک بر خصوصیات زراعی و ...

در تحقیقی مخصوص شد که ارقام مختلف ذرت و سطوح مختلف مصرف اسیدسالیسیلاک از نظر قطع ساقه در گروه‌های آماری منتفی کار گرفتند. به‌طوری که بیشترین و کمترین مقدار قطع ساقه گیاه‌های ذرت با میانگین 2/01/5/6/5 میلی‌متر و 1/51/7/28 میلی‌متر به ترتیب مربوط به تیمور رقم 76 درصد + مصرف یک میلی‌مولار اسیدسالیسیلاک و تیمور رقم 62/5 درصد + مصرف اسیدسالیسیلاک بود (Zarei et al., 2012). محققان اظهار داشتند صفت قطع ساقه تحت تأثیر تیمار تنش آبی قرار گرفت و در سطح آماری یک درصد معنی‌دار شد. تیمار آبی‌زا شاهد (آبی‌زا) پس از نخله 50 درصد رطوبت خاک با میانگین 8/16 سانتی‌متر و تیمار تنش آبی شدید (آبی‌زا) پس از نخله 70 درصد رطوبت خاک با میانگین 8/13 سانتی‌متر به ترکیب بیشترین و کمترین مقدار عملکرد بیولوژیکی را به خود اختصاص دادند (Sheykhbagloo et al., 2009).

تعداد برگ به صورت ذرت و سويه در پوشه تحت تأثیر تیمار آبی‌زا با توجه به ذرت اندازه تغییری مشاهده نمی‌شد. تعداد گزینه، بیشترین تعداد برگ سیز در سطح به ترتیب مربوط به نخستین و کمترین تعداد آن با میانگین 9/77 عدد مربوط به رقم S.C370 (جدول 3) و تعداد برتک در Apex گیاه تحت تأثیر عامل داخلی (زندیک گیاه) و به ترتیب تحت تأثیر عوامل محیطی قرار می‌گیرد. به‌همن دلیل است که در این آزمایش هم یک تیمار تنش آبی و یک تیمار اسیدسالیسیلاک به تعداد برگ سیز در گیاه غیر معنی‌دار است. معنی‌داره‌ی قابل توجهی در طول دوره رشد و نمو آن بیشتر باشد، تعداد برگ تولیده شده در آن نیز بیشتر خواهد بود.

محققان گزارش نمودند که اثر سطوح مختلف مصرف اسیدسالیسیلاک بر سرتختی یا آشفته‌ی سطح برتک، تعداد اندازه برگ سیز گیاه اختلاف آماری معنی‌داری در سطح نخستین و نخستین و کمترین تعداد برتک سیز با میانگین 1/47 عدد به ترتیب معنی‌دار می‌باشد. سپس سازه‌بندی کریستال‌های اسیدسالیسیلاک (با غلظت 200 بی‌پی‌ام) و تیمار عدم مصرف اسیدسالیسیلاک بود (Hussein et al., 2007). در تحقیق دیگری اثرات مختلف مصرف اسیدسالیسیلاک از نظر ساقه سطح برتک اختلاف آماری معنی‌داری وجود داشت. به‌طوری که بیشترین و کمترین شامل سطح سیز 3/67 و 1/76 برتک متعلق به تیمار محلول پاک اسیدسالیسیلاک (با غلظت 2/5 میلی‌مول) و تیمار عدم مصرف اسیدسالیسیلاک بود (He et al., 2005). نتیجه پژوهش نشان داد که صفت تعداد برگ تحت تأثیر تیمار تنش خشکی قرار نگرفت و لی مصرف اسیدسالیسیلاک در سطح آماری یک درصد معنی‌دار شد. بیشترین و کمترین تعداد برگ با میانگین 3/84 و 6/8 عدد به ترتیب متعلق به تیمار محلول پاک اسیدسالیسیلاک بود (Bayat et al., 2011).
نتایج تحقیقات نشان داد که اثر سطوح مختلف تیمار مصرف اسیدسالسیلیک بلافاصله پس از گیاه درت اختلاف امکان می‌دای در سطح یک درصد داشته، به‌طوری که بهترین و کمترین تعداد برگ سبز در مرحله رشد رویشی گیاه با میانگین ۲/۲۵ و ۳/۲۵ عدد بستری تعلق به تیمار محلول باشی اسیدسالسیلیک (با غلظت ۲۰۰ پی‌یام) و تیمار عدم مصرف اسیدسالسیلیک بود.

سایر محققان اظهار داشتند که تعداد کل برگ در گیاه درت تحت تأثیر تیمار تنش، یک قرار نگرفت ولی در جدول مقایسه میانگین‌ها تیمار آبی‌ریز شاهد (آبی‌ریز پس از تخلیه ۵۰ درصد رطوبت خاک) با میانگین ۱۲ عدد و تیمار تنش آبی شدید (آبی‌ریز پس از تخلیه ۷۰ درصد رطوبت خاک) با میانگین ۱۸۱۲ عدد بهترین بیشترین و کمترین تعداد برگ در بوته را با خود اختصاص دادند (Farahbakhsh and Shamsaddin Saiid, ۲۰۱۱).

تعداد بالاب در بوته: در جدول تجزیه واریانس صفات، تعداد بالاب در بوته تحت تأثیر سطوح مختلف تن‌ت بشب در گرفت و در سطح اماراتی بنج درصد معنی‌دار شد (جدول ۵). هنچ‌که اثر محلول نازی اسیدسالسیلیک بر صفت تعداد بالاب در بوته معنی‌دار داشت ولی باعث افزایش تعداد بالاب از ۳۰۰۰۰ عدد در هکتار شد (جدول ۶) در جدول مقایسه میانگین‌ها، در سطح تیمار آلی، بیشترین تعداد بالاب در بوته با میانگین ۲/۲ عدد در هر بوته مربوط به تیمار آبی‌ریز شاهد و کمترین تعداد آن با میانگین ۷۸/۸ عدد در هر بوته مربوط به تیمار تنش شدید آبی (آبی‌ریز) براساس ۶۰ درصد نیاز آبی گیاه بوت (جدول ۶).

تعداد بالاب در بوته در زراعت ذرت از اهمیتی خاصی برخوردار است، زیرا یکی از مهم‌ترین عوامل تعیین کننده کیفیت علف در تهیه دام‌ها می‌باشد. با شدت بالاتر تن آبی مقدار رشد رویشان و توزیع برگ‌ها در گیاه کاهش می‌یابد و در پی آن نیز مجموع کروپیچه‌های تولیدی شده در گیاه نقش خواهد یافت و شیب‌ها برای تولید تعداد بیشتری از بالا فراهم نموده شد. محاسبه گزارش نمونه‌کننده که صفت تعداد بالاب در مرحله تحت تأثیر تیمار مصرف اسیدسالسیلیک در سطح اماراتی یک درصد معنی‌دار شد. بیشترین و کمترین تعداد بیشتر با میانگین ۵۰/۸ عدد بستری تعلق به تیمار محلول باشی اسیدسالسیلیک با غلظت ۲۰۰ دلار در لیتر + خیسادن دارد در محلول ۷۵/۸ دلار در لیتر اسیدسالسیلیک و تیمار محلول باشی اسیدسالسیلیک با غلظت ۵۰/۸ دلار در لیتر + خیسادن دارد در محلول ۷۵/۸ دلار در لیتر اسیدسالسیلیک (Shoaa and Miri, ۲۰۱۲). در تحقیق دیگری بین سطوح مختلف تیمار مصرف اسیدسالسیلیک و تنش شوری از نظر تعداد بالاب در گیاه ذرت اختلاف امکان می‌دای در داشته، به‌طوری که بهترین و کمترین تعداد بالاب در گیاه با میانگین ۲/۷ عدد و ۴/۸ عدد سانتی‌متر بستری تعلق به تیمار شاهد و تیمار (نش شوری + مصرف یک دلار اسیدسالسیلیک بود (Levent Tuna et al., ۲۰۰۷).
جدول۵- نتایج تجزیه واریانس (میانگین مربعات) صفات ذرت تحت شرایط تنش آب و کاربرد اسیدسالیسیلیک

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>درجه ارایه DF</th>
<th>تعداد بذل در بوته Number of ear/plant</th>
<th>عملکره بیولوژیکی گیاه Biological yield of plant</th>
<th>حیات الکترکی شیره سلولی Electrical conductivity of cell sap</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار Replication</td>
<td>2</td>
<td>0.001 ns</td>
<td>4.13 ns</td>
<td>1224.01 ns</td>
</tr>
<tr>
<td>تنش آب Water stress (W)</td>
<td>2</td>
<td>0.189 *</td>
<td>692.35 **</td>
<td>55479.25 **</td>
</tr>
<tr>
<td>خطای Error (a)</td>
<td>4</td>
<td>0.01</td>
<td>20.32</td>
<td>7459.74</td>
</tr>
<tr>
<td>هیบรید Hybrid (V)</td>
<td>2</td>
<td>0.030 ns</td>
<td>992.90 **</td>
<td>15796.07 *</td>
</tr>
<tr>
<td>خطای Error (b)</td>
<td>4</td>
<td>0.021 ns</td>
<td>32.26 *</td>
<td>14956.29 *</td>
</tr>
<tr>
<td>اسیدسالیسیلیک Salicylic Acid (Sa)</td>
<td>1</td>
<td>0.005 ns</td>
<td>18.96 ns</td>
<td>2360.16 ns</td>
</tr>
<tr>
<td>تنش آب×اسیدسالیسیلیک W×Sa</td>
<td>2</td>
<td>0.064 **</td>
<td>32.01 ns</td>
<td>9004.66 ns</td>
</tr>
<tr>
<td>هیبرید×اسیدسالیسیلیک V×Sa</td>
<td>2</td>
<td>0.036 ns</td>
<td>51.46 m</td>
<td>1066.88 ns</td>
</tr>
<tr>
<td>آب×هیبرید×اسیدسالیسیلیک W×V×Sa</td>
<td>4</td>
<td>0.013 ns</td>
<td>31.93 ns</td>
<td>4153.22 *</td>
</tr>
<tr>
<td>خطای Error (c)</td>
<td>18</td>
<td>0.01</td>
<td>9.24</td>
<td>3863.24</td>
</tr>
<tr>
<td>ضویع تغییرات CV (%)</td>
<td>-</td>
<td>10.65</td>
<td>8.76</td>
<td>3.46</td>
</tr>
</tbody>
</table>

ns, * and **: non-significant difference, significant difference at the level of five and one percent probability, respectively.
Table 6- Average comparison of effects water stress, cultivar and salicylic acid on physiological characteristics of corn

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Number of ear/plant</th>
<th>Biological yield of plant (ton/ha)</th>
<th>Electrical conductivity of cell sap (µs/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شاهد</td>
<td>1.07 a</td>
<td>40.33 a</td>
<td>1646 c</td>
</tr>
<tr>
<td>I₀</td>
<td>0.93 b</td>
<td>35.72 b</td>
<td>1748 b</td>
</tr>
<tr>
<td>I₁</td>
<td>0.87 b</td>
<td>28.06 c</td>
<td>1988 a</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.C 370</td>
<td>0.93 a</td>
<td>26.44 c</td>
<td>1828 a</td>
</tr>
<tr>
<td>V₁</td>
<td>0.95 a</td>
<td>36.83 b</td>
<td>1780 b</td>
</tr>
<tr>
<td>Apex</td>
<td>1.01 a</td>
<td>40.83 a</td>
<td>1774 b</td>
</tr>
<tr>
<td>S.C 704</td>
<td>0.95 a</td>
<td>34.11 a</td>
<td>1787 a</td>
</tr>
<tr>
<td>V₃</td>
<td>0.97 a</td>
<td>35.29 a</td>
<td>1800 a</td>
</tr>
</tbody>
</table>

Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test).

Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test).
ارزیابی اثر محلول‌یافت اسیدسالیسیلیک بر خصوصیات زراعی و ...

میانگین ۲۸/۰۰۶ درصد مربوط به تیمار تنش شدید آبی (آب‌یاری براساس ۶۰ درصد نیاز آبی گیاه) بود (جدول ۶).

جدول ۷- مقایسه میانگین های اثر تنش آبی، رقم و اسیدسالیسیلیک بر خصوصیات فیزیولوژیکی ذرت

<table>
<thead>
<tr>
<th>تیمارها</th>
<th>تعداد بالا در بوته (عدد)</th>
<th>عملکرد بیولوژیکی گیاه (تن/هکتار)</th>
<th>هدایت الکتریکی شیره سلولی (میکروسیل/کیلومتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W₀ V₁ S₀</td>
<td>۰.۸۳ d-e</td>
<td>۳۱.۶۷ c-d</td>
<td>۱۶۶۱ d-e</td>
</tr>
<tr>
<td>W₀ V₁ S₁</td>
<td>۱.۱۸ a-b</td>
<td>۳۳.۳۳ c</td>
<td>۱۶۵۰ e-f</td>
</tr>
<tr>
<td>W₀ V₂ S₀</td>
<td>۱.۰۳ ab</td>
<td>۴۳.۰۰ b-a</td>
<td>۱۵۵۰ f</td>
</tr>
<tr>
<td>W₀ V₂ S₁</td>
<td>۱.۱۶ a</td>
<td>۴۰.۶۷ b</td>
<td>۱۶۲۵ e-f</td>
</tr>
<tr>
<td>W₀ V₃ S₀</td>
<td>۱.۱۳ ab</td>
<td>۴۸.۰۰ a</td>
<td>۱۶۶۱ d-f</td>
</tr>
<tr>
<td>W₀ V₃ S₁</td>
<td>۱.۱۶ a</td>
<td>۴۵.۳۳ a</td>
<td>۱۷۱۰ c-e</td>
</tr>
<tr>
<td>W₁ V₀ S₀</td>
<td>۰.۹۰ c-e</td>
<td>۲۶.۰۰ d-f</td>
<td>۱۸۰۵ b-c</td>
</tr>
<tr>
<td>W₁ V₀ S₁</td>
<td>۱.۰۰ a-e</td>
<td>۲۴.۳۳ ef</td>
<td>۱۸۰۷ b-c</td>
</tr>
<tr>
<td>W₁ V₂ S₀</td>
<td>۰.۹۳ b-e</td>
<td>۴۰.۰۰ ab</td>
<td>۱۷۷۹ c-f</td>
</tr>
<tr>
<td>W₁ V₂ S₁</td>
<td>۰.۸۰ e</td>
<td>۴۴.۰۰ ab</td>
<td>۱۷۴۰ c-e</td>
</tr>
<tr>
<td>W₁ V₃ S₀</td>
<td>۱.۰۶ a-c</td>
<td>۴۳.۳۳ ab</td>
<td>۱۷۶۰ c-e</td>
</tr>
<tr>
<td>W₁ V₃ S₁</td>
<td>۰.۹۳ b-e</td>
<td>۴۵.۰۰ a</td>
<td>۱۶۴۰ ef</td>
</tr>
<tr>
<td>W₂ V₀ S₀</td>
<td>۰.۹۰ c-e</td>
<td>۲۱.۶۷ f</td>
<td>۲۰۰۵ a</td>
</tr>
<tr>
<td>W₂ V₀ S₁</td>
<td>۰.۸۳ de</td>
<td>۲۱.۶۷ f</td>
<td>۲۰۰۵ a</td>
</tr>
<tr>
<td>W₂ V₁ S₀</td>
<td>۰.۸۶ c-e</td>
<td>۲۸.۳۳ c-e</td>
<td>۱۹۷۷ a</td>
</tr>
<tr>
<td>W₂ V₁ S₁</td>
<td>۰.۹۰ c-e</td>
<td>۳۳.۵۴ c</td>
<td>۱۹۸۲ a</td>
</tr>
<tr>
<td>W₂ V₂ S₀</td>
<td>۰.۹۳ b-e</td>
<td>۳۳.۲۹ c</td>
<td>۱۹۱۲ b-a</td>
</tr>
<tr>
<td>W₂ V₂ S₁</td>
<td>۰.۸۳ de</td>
<td>۳۳.۰۰ c</td>
<td>۲۰۰۵ a</td>
</tr>
<tr>
<td>W₂ V₃ S₀</td>
<td>۰.۸۳ de</td>
<td>۳۳.۰۰ c</td>
<td>۲۰۰۵ a</td>
</tr>
<tr>
<td>W₂ V₃ S₁</td>
<td>۲۰۰۵ a</td>
<td>۲۱.۶۷ f</td>
<td>۲۰۰۵ a</td>
</tr>
</tbody>
</table>

Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test).

اگر دسترسی ریشه گیاهان به منابع آبی دچار محدودیت نگردد، گیاه می‌تواند با توسعه مناسب سیستم ریشه‌ای و شاخ و برگ خود، سطح فتوسنتزکننده بیشتری را در مقابل نور خورشید ایجاد نماید و با افزایش میزان آسیمیلاتیون تولیدی سرعت رشد و در نتیجه تجميع ماده خشک را در بافت‌های
نتایج پژوهش نشان داد که اثر تیمار اسدسالیسیلیک بر گیاهان مورد خشک در سطح یک درصد معنادار نبوده ولی برای معنادار و کمترین مقدار گیاهان مورد خشک در سطح یک درصد معنادار مقدار اسدسالیسیلیک (محلول‌های 2/1 میلی‌مولار) و تیمار عدم مصرف اسدسالیسیلیک بود (Mehrabian-moghaddam et al., 2011). محققان گزارش نمودند که اثر تیمار منابع آب و اراق مختلف در ثبت سطح موفقیت در سطح احتمال یک درصد معنادار شدند. به طوری که بهترین مقدار مصرفی در شرایط آبیاری نرمال با میانگین 1115 کیلوگرم در هكتار مربوط به رقم 7 و کمترین مقدار آن در شرایط نش آب با میانگین 475 کیلوگرم در هكتار مربوط به رقم 704 بود (Norouzian et al., 2011).

پژوهشگران اظهار داشتند که صفت وزن خشک کل بوته تحت تأثیر سطوح مختلف تیمار مصرف اسدسالیسیلیک قرار گرفت و در سطح آمیزی پنج درصد معناداری شد. به طوری که بهترین و کمترین مقدار وزن خشک بوته با میانگین 2/1 و 2/7 گرم به ترتیب متعلق به تیمار محلول‌های کمی مصرف اسدسالیسیلیک (با غلظت 2/000 میلی‌مولار) و تیمار عدم مصرف اسدسالیسیلیک بود. (Hussein et al., 2007). در تحقیق مشخص شد که اثر تیمار دور آبیاری بر صفت وزن مصرف در سطح یک درصد معنادار نبود و وزن در تیمار آبیاری هر 1 روز یک‌بار 15 درصد نسبت به شاهد (آبیاری 7 روز) کاهش نشان داد (Mehrabian Moghaddam et al., 2011). نتیجه مشخص هزاران گزارش نمودند که اثر تیمار اسدسالیسیلیک بر وزن خشک علوفه معنادار بود و باعث افزایش وزن خشک علوفه از گرم بر 100 کیلوگرم در تیمار شاهده 130 گرم بر متر مربع در تیمار مصرف 1/1 میلی‌مولار (Daneshmand et al., 2012).

نتایج یک پژوهش نشان داد که اثر متقابل تیمار (دور آبیاری + مواد ضد تعرق) بر صفت علوفه دانه در سطح پنج درصد معنادار شد و تیمار (دور آبیاری 7 روز + صرب بی‌صرفی) با میانگین 12/39 گرم در بوته و تیمار (دور آبیاری 10 روز + عدم مصرف مواد ضد تعرق) با میانگین 45/24 گرم بوته به ترتیب بیشتر و کمترین مقدار علوفه را تولید نمودند (Bayat et al., 2010). گزارش نمودند که با اعمال تنش عملکرد بیولوژیکی درت 14/29 درصد کاهش یافت. با کاهش بیشتر رطوبت در نش شدید، عملکرد بیولوژیکی نسبت به آبیاری بهنیه و نش ملایم به ترتیب 31/56 و
ارزیابی اثر محلول‌های اسیدسالیسیلات بر خصوصیات زراعی و...

1968 درصد کاهش نشان داد. بیشترین میزان عمدکرد بیولوژیک متعلق به آبیاری بهره از میکائین 14778 تا 146 کیلوگرم در هکتار متعلق به شرایط تنش شدید بود (Mahrokh et al., 2011).

هدفکتکی شریه سلولی: اثر تیمار تنش آبی در سطح یک درصد و آن ارقام مختلف دی مربوط به سطح پنج درصد بر صفت هدایت الکتریکی شریه سلولی معمولاً داشته است (جدول 5). با مقایسه میکائین های اثرات اصلی، بیشترین مقدار هدایت الکتریکی شریه سلولی ناشی از تخریب غشای سلولی با میکائین 1988 میکروزینمس بر سانتیمتر مربوط به تیمار تنش کمبود آبی شدید (تیمار ابایی براساس 60 درصد ناب کیه‌گی) و کمترین مقدار آن با میکائین 1464 میکروزینمس بر سانتیمتر S.C704 مربوط به آبیاری شاهد بود. (جدول 6). همچنین در بین سطوح ارقام مورد بررسی، رقم S.C704 با میکائین 1774 میکروزینمس بر سانتیمتر کمتر و رقم S.C370 با میکائین 1828 میکروزینمس بر سانتیمتر تیمور 60 درصد ابایی + مصرف اسیدسالیسیلاته (۳۰۰/۰ ییام) و کمترین میزان آن مربوط به تیمار شاهد (عدم آبیاری) + مصرف اسیدسالیسیلاته می‌باشد (جدول 7).

نتایج مقایسه میکائین اثرات متقابل نشان داد که بیشترین هدایت الکتریکی شریه سلولی مربوط به نتیجه سلولی مقایسه می‌گردد. هدایت الکتریکی ناشی از تخریب غشای سلولی. محلول محیطی‌های غیابی یافته گاهی که دارای هدایت الکتریکی بیشتری باشد، در این داده‌ها و آن ارقام تیماری تراوایی غشای سلولی و آبی بر می‌دارند.

محققان گزارش نمودند که اثر تیمار اسیدسالیسیلاته بر نتیجه سلولی در سطح یک درصد معنادار به‌طوری که بیشترین کمترین مقدار نتیجه سلولی در بین سطوح تیمار مصرف اسیدسالیسیلاته (۱/۰ میلی‌مول) و تیمار (خیسندگی) بیشتر از محلول پاپ ۱۵/۰ میلی‌مول در مرحله گردیده افتاب‌نورد. بین سطوح مختلف شریه سلولی و سطوح اسیدسالیسیلاته از نظر میزان نتیجه سلولی به‌طوری که نتیجه کمتر ۲۴ درصد نسبت داشته‌اند. در شرایط تنش خشک‌شده بیشتری از سلول در اثر تخریب غشا به بیرون تراش و می‌کند. این تغییرات که در ساختار غشا سلول در اثر تغییر چربی‌ها و تغییرات دیگر ایجاد می‌شود، سبب افزایش نفوذ بی‌طرف غشا می‌باشد. نسبت به سیلی و مکزومولکولا ۱۵۸
شرایط تحقیقات کاربردی اکوفيسيولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان ۷۷

می‌گوید: کمیاب آب از یک طرف به تأثیر بر ساختار غشاء سلول سبب افزایش نفوذپذیری غشا نسبت به بیون‌ها و میکروکولوها می‌گردد و از طرف دیگر با افزایش رطوبت نسبی و دمای زمینه کاهش تنش‌زن در واحد سطح یک بیشتر و افزایش آبی را فراهم آورد (Mehrabian Moghaddam et al., 2011). در تحقیقی مشخص شد که اثر تیمار تنش آبی بر صفت پایداری غشاء سلولی در مرحله گلدهی ترش در سطح احتیال یک درصد معنی‌دار داشته و بیشترین مقدار پایداری غشاء سلولی با میانگین ۷۸/۳ درصد مربوط به تیمار آبایی بین از ۱۵۰ میلی‌متر تبخیر بود (Khadem et al., 2010).

پژوهشگران اظهار داشتند که تأثیر سبب اکسیدالسیلیک اکسید به میزان نسبت به نوی گیاهان تحت تأثیر تن‌زه‌های مختلف مانند شده است. برای مثال این ماده سبب کاهش معنی‌داری بر نوی یونی ترش در تیمار کاهش یافت (Gunes et al., 2007; Tuna et al., 2007). اکسیدالسیلیک سبب پایداری غشاء سلولی در مرحله پود و باعث پایداری غشاء سلولی از ۶۰ درصد در تیمار شاهد به ۷۷ درصد در تیمار مصرف ۲۰ میلی‌متر اکسیدالسیلیک شد (Daneshmand et al., 2012). در دو شرایط، گزارش نمودند که اثر تیمار تنش آبی و رقیق مختلف در بر صفت خسارت غشاء سلولی در مرحله کاهش دهی در سطح احتیال یک درصد معنی‌داری شدند. به طوری که بیشترین خسارت به غشاء سلول در شرایط در شریان آبی با میانگین ۶۵/۳ درصد مربوط به رقیق (۶۴ و کمتر مقدار خسارت به غشاء سلول در شریان آبی ۶۵/۳ درصد) مربوط به رقیق (۵۰۰ بود (Norouzian et al., 2011).

نتیجه‌گیری

نتایج این آزمایش نشان داد که با افزایش شدت محیط‌های بیولوژیکی درز از میانگین ۳۷/۳ تا نر در هکتار در تیمار آبایی شاهد به میانگین ۶۸/۳ تا نر در هکتار در آبایی براساس ۵۰ درصد نر آبی گیاه کاهش یافته استفاده از محلولی اکسیدالسیلیک باعث افزایش عملکرد بیولوژیکی ارقم درت شد ولی این افزایش معنی‌دار بود. در بین هربردهای مختلف درز از نظر عملکرد بیولوژیکی اختلاف معنی‌داری مشاهده شد. هربردهای ۷۰۰۳ تا نر در هکتار نسبت به ساپر هربردها از برتری محسوسی برخوردار بود.
ارزیابی اثر محلول پاشی اسید سالیسیلیک بر خصوصیات زراعی و ...

منابع

ارزیابی اثر محلول یانسی اسید سالیسیلیات بر خصوصیات زراعی و ...

