بررسی واکنش ژنوتیپ‌های بومی شنبلیله به هدایت الکتریکی مختلف خاک

صغری صابونی، داود صادقزاده اهری*، محمد جواد نظری جو، غلامرضا وظیفه اطلاع‌رسانی

چکیده
مقدمه:
به‌ویژه با توجه به اینکه ایران در کمرنگ‌ترین بیابانی جهان قرار دارد و در نتیجه با محدودیت آب و اراضی نور مواجه می‌باشد، بیماران هدف از به‌وهش بررسی واکنش ژنوتیپ‌های بومی شنبلی به هدایت الکتریکی خاک انجام شد.

مواد و روش‌ها:
این پژوهش بصورت آزمایش فاکتوریل بر پایه بلوک‌های کامل تصادفی با 3 تکرار در شرایط گلخانه‌ای طی پهار و تاسیست سال 1391 در مراغه انجام شد. فاکتورهای مورد بررسی شامل پنج توده بومی شنبلیه (اردستان، خراسان، سمنان، کاشان و نیشابور) و دو سطح مخلوط هدایت الکتریکی (0، 25 و 50 میلی متر) بود. توده‌های مختلف خاک دارای هدایت الکتریکی مختلط بودند که در محیط گلخانه‌ای با طول روز و طول شب بترتیب 16 و 8 ساعت، دمای روز و شب بترتیب 27 و 18 درجه سانتی‌گراد) قرار گرفتند. 90 روز از کاشت، 17 صفت مورفولوژیکی، فیزیولوژیکی و فیتولوژیکی مختل اندازه‌گیری گردید.

*نویسنده مسئول: dsadeghzade@yahoo.com

بیانیه نمایشنامه: نمایشنامه نشریه "تحقیقات کاربردی اکوفیزیولوژی گیاهی"
بررسی واکنش ژنوتیپ‌های بومی شنبلیله به هدایت‌های الکتریکی

نتایج: نتایج نشان داد که افزایش هدایت الکتریکی خاک سبب تأخیر در سری کردن بذر و ظهور گل‌ها شد.

طول و جرم ریشه، تعداد غلاف در بوته، تعداد دانه در غلاف، وزن تر و خشک ریشه و ساقه، طول ساقه و میزان
نیتروژن ساقه تحت تأثیر افزایش هدایت الکتریکی خاک کاهش یافت. بین زنوی‌پی‌ها از نظر صفات
تعداد غلاف در بوته، تعداد دانه در غلاف، طول و وزن خشک ساقه، میزان انحراف قفسه، نیتروژن، بیان‌سازی و سیمی
انداز هوانی از نظر آماری تفاوت‌های معنی‌داری وجود نداشت. مطلق نتایج مقایه‌برنی و حساسیت زنوی‌پی‌ها
در شرایت هدایت الکتریکی با لامپ‌برنی زنوی‌پی‌ها کاشان و اردستان بودند.

نتیجه‌گیری: نتایج این پژوهش حاکی از وجود تأثیر افزایش هدایت الکتریکی خاک بوده و حفاظت از زرم‌بلاست بومی این گیاه در کشور، ارزیابی و شناسایی بی‌درصد توجه‌های
بومی از نظر تحمیل با حساسیت به هدایت الکتریکی خاک ضروری می‌باشد. هم‌چنین استفاده از توجه‌پذیری بومی
مقایسه‌برنی نشان دهنده مناطقی با مشکل هدایت الکتریکی بالای خاک (شوری) توصیه می‌شود.

وژدهای کلیدی: ت نوع زنوی‌پی، خاک شور، صفات فیزیولوژیک، نسبت پاتیم به سدیم

مقدمه

ایران در کم‌پایانی بیانی جهان قرار دارد و قسمت عمده‌ای از اراضی کشور، بخشی از بودن مقدار
تخبیب و تعرق و باین بودن میزان نزولات گویی جزو مناطق خشک و نیمه‌خشک طبقه‌بندی می‌شوند.
در این مناطق بارندگی کم و به تبع آن خشکی و هدایت الکتریکی بالای خاک (شوری) از مهم‌ترین
عوامل محدود کننده تولید محصول محصول می‌شود (Momeni, 2010). وجود نمک در محیط خاک
که حاصل مورد طبیعی یا به‌وسیله‌ی است، می‌تواند رشد گیاه را از طریق افزایش پتانسیل اسمز و
در نتیجه کاهش پتانسیل آب (خشکی فیزیولوژیک)، افزایش غلتی بی‌پره‌ی بازدارنده متابولیسم
گیاهی (اخت ویره نمک) و تأثیر معکوس روی ساختار خاک مناسب کاهش نفوذپذیری آن به آب و هوا
(تیز فیزیکی-شیمیایی) کاهش دهد (Kafi et al., 2001). تحقیق ساده است که هدایت الکتریکی بالای
آب و خاک سبب بروز تغییرات مورفولوژیک، فیزیولوژیک و بوشیمئی متعادلی در گیاهان می‌شود.

(Tester and Davenport, 2003; Munns and Tester, 2008)
نشریه تحقیقات گاربردی اکوفیزیولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان ۹۷

(Petropoulos, 2002, نشریه ساگار گیاهی مناسبی با آب و هوای حاکم بر مناطق خشک و نیمه‌خشک داشته و گیاهی با نیاز آبی کم است (2015). Kapoor and Pande, Farhadی et al., 2014). شنبلیه کشور تنوع مطلقی از نظر تحلیل به تنش خشکی گزارش شده است (Sadeghzadeh Ahari et al., 2010; Sadeghzadeh Ahari et al., 2016). شنبلیه در خاک‌های باره‌آکایی دوره پنجم، شماره اول، بهار و تابستان ۷۹ اثر محیط‌بندی نیز قابل‌پذیری‌ست (Nasiri et al., 2016). حد تحلیل به شوری در شنبلیه تا ۱۰ دسی‌ویستین بر متر گزارش شده است (Kiyani, 2004; Abdelmoumen and El Idrissi, 2009; Nasiri et al., 2016). متقابل‌گزارشاتی وجود دارد که نشان می‌دهد میزان بالایی هدایت الکتریکی خاک و آب بر رشد و تولید شنبلیه تأثیر منفی دارند (Hasni et al., 2009; Tuncturk, Naski et al., 2016). نتایج یک بررسی بر روی سه توه بومی شنبلیه (شیرازی، هندی و یزدی) نشان داد که افزایش غلظتی فلزات از راست شهر سبب کاهش ارتفاع بوته، طول ریشه، وزن خشک اندام‌هایی و وزن خشک ریشه و تعداد بروک، میزان پودرها و نسبت‌های در اندام‌هایی سبب شده ولی با افزایش نسبت نسبت در K/Na و Ca/Na و نسبت‌های اندام‌هایی گیاه آفتابی‌چی (Archanghi and Khodambashi, 2012) با توجه به توجهی آب و بستگی ان افزایش هدایت الکتریکی خاک و توزیع نسبت اراضی شور و آنگاهی در کشور می‌تواند نوشت خاک که اثر مختلفی در گرافیک‌هایی پژوهش‌شده با بهره‌برداری با کشف و کشف زنون‌پی‌ها و یا بعضی کشورها با نسبت‌های مختلف بالای خاک (شوری خاک) انجام شد.

مواد و روش‌ها

این مطالعه با استفاده از آزمایش فاکتوریال و بر پایه طرح بلورهای کاملاً تصادفی با سه تکرار در شرایط جغرافیایی یزد بهتر و نسبت‌های تولیدی ۱۹۹۱ در سه‌پاره‌مره‌بره سطح دریا، طول جغرافیایی ۱۱۳۹/۱ و عرض جغرافیایی ۳۷/۹۲ (انجام شد. گلخانه‌ای را نوع یک طریقه، دارای بوش‌شین‌هایی و مجوز به سیستم کنترل تور مصنوعی و طول روز بود (جدول ۱). فاکتورهای آزمایش شامل سطوح مختلف هدایت الکتریکی خاک (۵/۰ و ۱/۵ میلی‌متر بر سانتی‌متر مربع) و یک بار قرارگیری در سطوح مختلف با کهنه‌پی‌ها و یا بهره‌برداری شده در سه‌پاره‌مره‌بره سطح دریا و شرایط جغرافیایی یزد در کشور (جدول ۲). هر گل‌دان با مقدار ثابتی از خاک (۲ کیلوگرم) و با هدایت الکتریکی مورد نظر بر شده و ۱ عدد از ان حریق در عمق ۲-۳ سانتی‌متری یکتی شدند، پس از جوامعی و استقرار گیاهان در گلدان ۱۰ بار به ترتیب شرایط بسته به حالت مناسبی انتخاب و مانند حذف گردید. اعمالی مکثری گلدان‌ها با دور آپاری ۷ رووز در حد طرفیت زراعی تا زمان رسیدن انجام شد.
پرورش واکنش ژنوتیپ‌های بومی شنبلی به هدایت الکتریکی

جدول ۱- شرایط نوری و دمایی گلخانه در طول اجرای آزمایش

<table>
<thead>
<tr>
<th>Day length (hr)</th>
<th>Relative Humidity (%)</th>
<th>Day Temp. (°C)</th>
<th>Night Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۶</td>
<td>۵۰</td>
<td>۲۷±۲</td>
<td>۱۸±۲</td>
</tr>
</tbody>
</table>

جدول ۲- اسامی و مختصات جغرافیایی مناطق جمع‌آوری بذر توده‌های بومی شنبلی

<table>
<thead>
<tr>
<th>Landrace name</th>
<th>Province</th>
<th>طول جغرافیایی</th>
<th>عرض جغرافیایی</th>
<th>ارتفاع از سطح دریا (متر)</th>
<th>ارتفاع (م)</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردستان</td>
<td>اصفهان</td>
<td>۵۲°۳۵</td>
<td>۳۳°۲۵</td>
<td>۱۲۵۰</td>
<td></td>
</tr>
<tr>
<td>خراسان رژاوی</td>
<td>خراسان رژاوی</td>
<td>۵۷°۴۳</td>
<td>۳۶°۱۲</td>
<td>۹۸۰</td>
<td></td>
</tr>
<tr>
<td>سمنان</td>
<td>سمنان</td>
<td>۵۳°۳۲</td>
<td>۳۵°۳۱</td>
<td>۱۱۳۰</td>
<td></td>
</tr>
<tr>
<td>کاشان</td>
<td>کاشان</td>
<td>۵۱°۵۸</td>
<td>۳۲°۵۸</td>
<td>۹۸۰</td>
<td></td>
</tr>
<tr>
<td>نیشابه</td>
<td>نیشابه</td>
<td>۴۵°۴۸</td>
<td>۳۶°۱۶</td>
<td>۱۲۱۰</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳- خصوصیات فیزیکی و شیمیایی خاک مورد استفاده در گلخانه‌های آزمایش

<table>
<thead>
<tr>
<th>Soil texture</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
<th>pH</th>
<th>Lime (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy Loam</td>
<td>۵۵</td>
<td>۳۱</td>
<td>۷</td>
<td>۶.۸</td>
<td></td>
</tr>
</tbody>
</table>
سنگرخی نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان 97

ساعت وزن خشک ساقه و خشک ریشه انداره گردنی میزان عناصر نیترات ریشه و ساقه، فسفر
ساقه، بیانی ساقه، سیب و سبز تماس به سدیم غیابان تهیه گردید (Emami, 1996).
همچنین رئیا نیز در زننیات و نسبت به افزایش هدایت الکتریکی خاک (سوزی) صورت گرفته و زننیاتی که دارای کمترین میانگین ریشه بود، عنوان متحمل گردید.

زننیات در برابر هدایت الکتریکی بالای خاک نسبت به نسبت
Sarmadnia et al., 1988).

نتایج و بحث
تعداد روز از کاشت آغاز گذاشته گلدی: نتایج نشان داد که اثر زننیات بر این صفات از نظر
آماری معنادار بود. و لی اثر هدایت الکتریکی خاک بر یک‌هم‌میانگین (جدول ۳). در مقایسه با
شاهرد، تیمار هدایت الکتریکی ۱/۵ میلی‌متر بر سانتی‌متر به‌طور متوسط به‌ترتیب باعث ۵ و ۸ روز
تا‌خیر در زمان میان گلدی بزرگ و گلدی زوده‌های بومی گردید (جدول ۵). نتایج بررسی‌های انجام شده
در شش‌بله‌های از آخرین تیمار و پژوهش‌های آپرچیت تندیک تیمار و پژوهش‌های مقاله‌ها از ازون‌های
Archangi and
Khodambashi, 2012; Hasni et al., 2009

ارتفاع گیاه: ارتفاع گیاه تحت تاثیر طبیعی مستقیم زننیات الکتریکی خاک ۵/۳ راز گرفت (جدول ۴)
براساس نتایج مقایسه‌های میانگین‌ها متوسط ارتفاع گیاه در تیمار شاهرد ۴۳ سانتی‌متر بود و با
افراش هدایت الکتریکی خاک بر ۱۵ میلی‌متر بر سانتی‌متر به‌طور متوسط ۱۸ سانتی‌متر به‌طور میانگین کاهش شد و
ارتفاع گیاه به ۳۸ سانتی‌متر رسید (جدول ۵). کاهش ارتفاع گیاه شیب‌شاخ در اثر تنش شوری
Hasni et al., 2009; Archangi and
Khodambashi, 2012; Farhadi et al., 2014; Kapoor and Pande, 2015; Nasiri et al.,

توسط پژوهشگران گیاه غلاف گردیده است (Khodambashi, 2012, 2012;

بیشترین ارتفاع گیاه در زننیات ارزشی ۵/۳۸ سانتی‌متر (جدول ۵) و کمترین میزان آن در زننیات سمنان

تعداد غلاف در بوته و تعداد جنگل در غلاف: نتایج نشان داد که اثرات زننیات و هدایت
الکتریکی خاک و هم‌چنین اثر متقابل این دو بر تعداد غلاف در بوته و تعداد جنگل در غلاف از میان‌دار
بود (جدول ۶). نتایج مقایسه میانگین‌های نشان داد که تیمار هدایت الکتریکی ۱/۵ میلی‌متر بر
سانتی‌متر باعث عدم تشکیل غلاف و دانه در غلاف گردید (جدول ۵). کاهش محسوس و میزان در
پرسی واکنش ژنوتیپ‌های بومی شنبلی به هدایت‌های الکتریکی

تعداد غلاف در بوته و تعداد دانه در غلاف شنبلی تحت شرایط تنش شوری توسط پژوهشگران دیگر نیز گزارش شده است (Farhadi et al., 2014).

جدول 4- تجزیه و ارائه (میانگین مربعات) خصوصیات مورد مطالعه توده‌های بومی شنبلی

<table>
<thead>
<tr>
<th>متغیر</th>
<th>درجه آزادی S.O.V.</th>
<th>DF</th>
<th>DE†</th>
<th>DF</th>
<th>PH</th>
<th>NPP</th>
<th>NSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>6.4ns</td>
<td>15.6ns</td>
<td>14ns</td>
<td>0.7ns</td>
<td>0.43ns</td>
<td></td>
</tr>
<tr>
<td>هدایت الکتریکی EC</td>
<td>1</td>
<td>203**</td>
<td>426**</td>
<td>3707**</td>
<td>58.8**</td>
<td>301**</td>
<td></td>
</tr>
<tr>
<td>زنوتیپ</td>
<td>4</td>
<td>2.2ns</td>
<td>25.7ns</td>
<td>354**</td>
<td>4.1**</td>
<td>21.6**</td>
<td></td>
</tr>
<tr>
<td>هدایت الکتریکی × زنوتیپ EC × G</td>
<td>4</td>
<td>4.7ns</td>
<td>5.7ns</td>
<td>31ns</td>
<td>4.1**</td>
<td>21.7**</td>
<td></td>
</tr>
<tr>
<td>خط</td>
<td>18</td>
<td>4.4</td>
<td>13.04</td>
<td>23.6</td>
<td>0.3</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

ضریب تغییرات CV (%)

| | 23.9 | 6.3 | 15.2 | 14 | 23.3 |

DE †= Days from planting till emergence, DF= Days from planting till 50% of flowering, PH= Plant height, NPP= Number of pod per plant, and NSP= Number of seed per pod.

ns, * and **: non-significant difference, significant difference at the levels of five and one percent probability, respectively.

جدول 5- مقایسه میانگین اثر هدایت الکتریکی خاک بر خصوصیات مورد مطالعه شنبلی

<table>
<thead>
<tr>
<th>هدایت الکتریکی Ec (mmhos/cm)</th>
<th>DE</th>
<th>DF</th>
<th>PH (cm)</th>
<th>NPP</th>
<th>NSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 (شاهد)</td>
<td>6a</td>
<td>53a</td>
<td>43.0 a</td>
<td>2.8 a</td>
<td>6.3a</td>
</tr>
<tr>
<td>1.5</td>
<td>11b</td>
<td>61b</td>
<td>20.8 b</td>
<td>0 b</td>
<td>0 b</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون دارای حرف مشترک می‌باشند، براساس آزمون چند دانه در سطح احتمال پنج درصد اختلاف معنی‌داری ندارند.

Means in each column fallowed by similar letters are not significantly different at the %5 probability level (Duncan Multiple Range Test).
مطالبی جدول ۶ کمترین تعداد غلاف در بوته و تعداد دانه در غلاف مربوط به توده بومی سمنان می‌باشد. نتایج نشان داد که در توده بومی سمنان حتی در نیم‌مربوط نیز غلافی تشکیل نشد (جدول ۷) که احتمالاً مربوط به نیازهای فیزیولوژیکی خاص آن بوته و بررسی‌های بیشتری در این زمینه از می‌باشد. در محیط بدون تنش بیشترین تعداد غلاف در هر بوته مربوط توده‌های کاشان و خراسان (۴ عدد) بود؛ همچنین توده‌های اردستان و نیشابور با ۹ عدد بیشترین تعداد دانه در هر غلاف را در محیط بدون تنش به خود اختصاص داده بودند (جدول ۷).

جدول ۶- مقایسه میانگین اثر توده‌های بومی شنبله به خصوصیات مورد مطالعه

میانگین‌هایی که در هر سطح دهیاری خرف مشترک می‌باشند، براساس آزمون جنگ دانک در سطح احتمال نیوی درصد اختلاف معنی‌داری ندارند.			
متغیرهای زیر	اردستان	خراسان	سمنان
pH (cm)	38.5 a	33.7 a	18.6 b
NPP	1.30 a	2.0 a	0.0 b
NSP	4.5 a	2.8 b	0.0 c
SDW (gr)	3.0 a	2.86 a	1.59 b
اردستان	34.8 a	2.0 a	4.0 a
خراسان	33.8 a	1.67 a	4.5 a
سمنان	33.8 a	1.67 a	4.5 a
کاشان	34.8 a	2.0 a	4.0 a
نیشابور	33.8 a	1.67 a	4.5 a
نیشابور	33.8 a	1.67 a	4.5 a
نیشابور	33.8 a	1.67 a	4.5 a
نیشابور	33.8 a	1.67 a	4.5 a

Means in each column followed by similar letters are not significantly different at the %5 probability level (Duncan Multiple Range Test).

طول و حجم ریشه: هدایت الکتروکی خاک اثر معنی‌داری بر طول و حجم ریشه داشت (جدول ۸). حجم و طول ریشه در تجارب شاهد (۱۵ میلی‌متر بر ساعت متر) بترین برای ۶۰/۷ سانتی‌متر مکعب و ۲۷/۲ به ترتیب در مقایسه با حجم و طول ریشه در تجارب الکتروکی ۱/۵ میلی‌متر بر ساعت متر (۴۲ سانتی‌متر مکعب و ۱۸/۲ سانتی‌متر) نتایج معنی‌داری داشت (جدول ۹). در ارزیابی اثر تنش شوری بر توده‌های شنبله، توسط سایر پژوهشگران نیز گزارش گردید که با افزایش غلظت شوری افزایش بوته، طول ریشه، وزن خشک اندام هوا، وزن خشک ریشه و تعداد گره‌های گاهی، شماره اول، بهار و تابستان ۷۹.
بررسی واکنش ژنوتیپ‌های بومی شنبلیله به هدایت‌های الکتریکی

(Mehrafarin et al., 2011; Naseri et al., 2016) که با نتایج پژوهش‌های اخیر مطابقت داشته و آن را تأیید می‌کند.

جدول 7- مقایسه میانگین اثر برهم کنش توجه‌های بومی شنبلیله و هدایت الکتریکی بر خصوصیات مورد مطالعه

<table>
<thead>
<tr>
<th>هدایت الکتریکی (Ec (mmos/cm))</th>
<th>ژنوتیپ</th>
<th>NPP</th>
<th>NSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 (شاد)</td>
<td>Ardestan</td>
<td>7.2 b</td>
<td>9 a</td>
</tr>
<tr>
<td>0.5 (check)</td>
<td>خراسان</td>
<td>4 a</td>
<td>5.7 b</td>
</tr>
<tr>
<td>0.5 (شاد)</td>
<td>Semnan</td>
<td>0 c</td>
<td>0 c</td>
</tr>
<tr>
<td>0.5 (check)</td>
<td>کاشان</td>
<td>4 a</td>
<td>8 a</td>
</tr>
<tr>
<td>0.5 (شاد)</td>
<td>Neyshabour</td>
<td>3.3 ab</td>
<td>9 a</td>
</tr>
<tr>
<td>0.5 (check)</td>
<td>نیشابور</td>
<td>3.3 ab</td>
<td>9 a</td>
</tr>
</tbody>
</table>

Means in each column fallowed by similar letters are not significantly different at the %5 probability level (Duncan Multiple Range Test).
وزن تر و خشک ریشه: وزن تر و خشک ریشه به طور معنی‌داری تحت تاثیر هدایت الکتریکی خاک قرار گرفت و کاهش یافت (جدول 8). وزن تر ریشه در تیمار شاهد 7/51 میلی گرم و در تیمار هدایت الکتریکی 1/15 میلی‌گرم بر سانتی‌متر 2/8 میلی‌گرم بود. کاهش وزن تر و خشک ریشه شنبله تحت شرایط تنش شوری توسط Archangi and Khodambashi, 2012; Kapoor and Pande, 2015 پژوهشگران دیگر نیز گزارش شده است (Hasni et al., 2009; Naseri et al., 2016). ممکناً گزارشات مبنی بر اثر غیرمعنی‌داری دار شوری بر وزن خشک ریشه در گیاه شنبله وجود دارد.

جدول 8- تجزیه واریانس (میانگین مربعات) خصوصیات مورد مطالعه توهده‌های بومی شنبله

<table>
<thead>
<tr>
<th>منبع تغییرات</th>
<th>درجه آزادی</th>
<th>DF</th>
<th>RL</th>
<th>RV</th>
<th>RFW</th>
<th>RDW</th>
<th>SFW</th>
<th>SDW</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td>2</td>
<td>22.4** 14.6** 1.3** 0.01** 21.3** 0.50**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تکرار</td>
<td>1</td>
<td>154** 137** 120** 1.64** 4258** 83.5**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>هدایت الکتریکی</td>
<td>1</td>
<td>10.4** 15.6** 8.7** 0.17** 43.1** 2.1**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ژنتیپ</td>
<td>4</td>
<td>26.1** 12.6** 6.4** 0.14** 20** 0.8**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ژنتیپ</td>
<td>18</td>
<td>15.4 5.7 3.6 0.1 17.0 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب تغییرات CV (%)</td>
<td>19</td>
<td>22.7 45.4 24.4 25.5 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL= Root Length, RV= Root volume, RFW= Root fresh weight, RDW= Root dry weight, SFW= Stem Fresh Weight, and SDW= Stem dry weight.

ns, * and **: non-significant difference, significant difference at the levels of five and one percent probability, respectively.
بررسی واکنش ژنوتیپ‌های بومی شنبلی به هدایت الکتریکی

جدول 9- مقایسه میانگین اثر هدایت الکتریکی خاک بر خصوصیات مورد مطالعه شنبلی

<table>
<thead>
<tr>
<th>هدایت الکتریکی (میلی‌مولاری/قرنطین)</th>
<th>RL (سانتی‌متر)</th>
<th>RV (سانتی‌متر)</th>
<th>RFW (گرم)</th>
<th>RDW (گرم)</th>
<th>SFW (گرم)</th>
<th>SDW (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0/0.5 (شامل)</td>
<td>22.9 a</td>
<td>6.7 a</td>
<td>6.17 a</td>
<td>0.75 a</td>
<td>28.1 a</td>
<td>4.24 a</td>
</tr>
<tr>
<td>1.5</td>
<td>18.4 b</td>
<td>2.4 b</td>
<td>2.17 b</td>
<td>0.28 b</td>
<td>4.3 b</td>
<td>0.91 b</td>
</tr>
</tbody>
</table>

میانگین‌هایی که در هر ستون دارای خرFH مشترک می‌باشند، براساس آزمون جین دامن در سطح احتمال ۵ درصد اختلاف معنی‌داری ندارند.

Means in each column fallowed by similar letters are not significantly different at the %5 probability level (Duncan Multiple Range Test).

وزن تر و خشک ساقه: وزن تر و خشک ساقه به‌طور معنی‌داری تحت تاثیر هدایت الکتریکی خاک قرار گرفت (جدول ۱۰) و تحت تاثیر انفیلاد میزان هدایت الکتریکی خاک کاهش یافت (جدول ۹). مقایسات میانگین نشان داد که متوسط وزن خشک و وزن تبیین شده به‌طور به‌تریج برابر ۴/۲۴ و ۲۸/۱۲ گرم بوده و میانگین وزن خشک و وزن تبیین شده به‌طور میانگین برابر ۱/۵ میلی‌مولار بر سانتی‌متر به‌طور به‌تریج برابر ۱/۹۱ و ۱/۴ گرم بود (جدول ۹). میزان تبیین شده هدایت الکتریکی خاک باعث افت محصول این صفات گردید. بنابراین، هدایت الکتریکی و وزن خشک ساقه اختلاف معنی‌داری وجد داشت (جدول ۱۰); به‌طوری که بیشترین و کمترین میزان وزن خشک ساقه به‌طور به‌تریج در توده‌های پایدار (۹/۸ گرم) و سمنان (۱/۵ گرم) بود. نتایج مطالعات انجام شده توسط سایر محققان نیز حاکی از تاثیر منفی تنش شیری بر وزن تر و خشک ساقه شنبلی است (Kapoor and Pand, 2015; Archangi and Khodamshahi, 2012; Farhadi et al., 2014).

نتیجه‌گیری: اثر هدایت الکتریکی خاک، زنیتریژ و اثر متقابل هدایت الکتریکی خاک در زنیتریژ بر میزان نیتروژن ساقه در سطح احتمال ۵ درصد معنی‌دار بود (جدول ۱۰). نتایج نشان داد که در بین زنیتریژ‌های شنبلی به‌طوریکه در این مطالعه، توده بومی سمنان با ۴۶ درصد بالاترین میزان نیتروژن در ساقه را داشت. افزایش هدایت الکتریکی خاک باعث کاهش معنی‌داری میزان نیتروژن در ساقه زنیتریژ‌های آزمایش‌های گردید. توده بومی نیشریز با میانگین ۳/۸ درصد، میزان نیتروژن بالاترین با بیشترین میزان نیتروژن در شرایط شاده (هدایت الکتریکی ۵/۰ میلی‌مولار بر سانتی‌متر) داشت. در حالت که در شرایط هدایت الکتریکی ۱/۵ میلی‌مولار بر سانتی‌متر توده‌های بومی اردستان و کاشان با ۲/۱ و ۴/۱ درصد به‌طور به‌تریج کمتری بود. بنابراین میزان نیتروژن را در ساقه داشتند (جدول ۱۱). به‌طور کلی میزان نیتروژن
ساقه در شرایط هدایت الکتریکی 0/15 میلی مس بر سانتی متر کاهش یافت. در توده نیروزون و سمنان این کاهش نسبت به تیمار شاهد به ترتیب 2/2 و 3/3 درصد بود (جدول 11). نتایج بررسی‌های انجام شده در گیاه سویا نشان داد با افزایش شوری میانگین درصد نیتروزون ساقه کاهش می‌یابد (Dadras et al., 2012).

جدول 10- تجزیه واریانس (میانگین مربعات) خصوصیات مورد مطالعه توده‌های بومی شنلیه

<table>
<thead>
<tr>
<th>مرحله آزادی</th>
<th>S.O.V.</th>
<th>SN†</th>
<th>RN</th>
<th>P</th>
<th>K</th>
<th>Na</th>
<th>K/Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>تکرار</td>
<td></td>
<td>2</td>
<td>0/11 ns</td>
<td>0/3 ns</td>
<td>0/01 ns</td>
<td>0/288 ns</td>
<td>0/002 ns</td>
</tr>
<tr>
<td>هدایت الکتریکی</td>
<td>1</td>
<td>12 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td>0/4 ns</td>
<td>0/001 ns</td>
<td>0/519 ns</td>
<td>0/015 ns</td>
<td>83 ns</td>
</tr>
<tr>
<td>زنوبی</td>
<td>4</td>
<td>1.8 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotype (G)</td>
<td></td>
<td></td>
<td>0/3 ns</td>
<td>0/006 ns</td>
<td>2/542 **</td>
<td>0/107 **</td>
<td>118 **</td>
</tr>
<tr>
<td>هدایت الکتریکی × زنوبی</td>
<td>4</td>
<td>1.6 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC × G</td>
<td></td>
<td></td>
<td>1/1 ns</td>
<td>0/004 ns</td>
<td>0/263 ns</td>
<td>0/096 **</td>
<td>36 ns</td>
</tr>
<tr>
<td>خطأ</td>
<td>18</td>
<td>0/13</td>
<td>0/46</td>
<td>0/002</td>
<td>0/322</td>
<td>0/015</td>
<td>25 ns</td>
</tr>
</tbody>
</table>

CV (%) SN and RN= ساقه، RN= ساقه، P= ساقه، K= ساقه، Na= ساقه. یا S.O.V= ساقه، K/Na= ساقه.

NS, * and **: non-significant difference, significant difference at the levels of five and one percent probability, respectively.

فسفر و یوناسیم ساقه: نتایج نشان داد که اثر زنوبی بر میزان فسفر و یوناسیم ساقه در سطح احتمال 0/1 درصد معنی‌دار بود (جدول 11). در حالی که اثر تیمار هدایت الکتریکی خاک و همچنین اثر متقابل هدایت الکتریکی خاک و زنوبی بر میزان فسفر و یوناسیم ساقه غیرمعنی‌دار بود. مقایسه میانگین داده‌ها نشان داد که توده سمنان با 0/2 درصد با الکتریکی میانگین ساقه را با خود اختصاص داده بود (جدول 12). توده بومی اردستان با 0/3 درصد و توده بومی سمنان با 0/5 درصد، با ترتیب
کمترین و بیشترین میزان پتاسیم را در سطح داشته و تفاوت توده سمنان با توده‌های بومی نیشابور، خراسان و اردستان در سطح احتمال 0.05 معنی‌دار بود (جدول 12).

جدول 11- مقایسه میانگین آن برهم‌کنش توده‌های بومی شنبلیله و هدایت الکتریکی بر خصوصیات مورد مطالعه.

جدول 11- Mean comparison of interaction effects of fenugreek landraces and soil electrical conductivity on studied characteristics

<table>
<thead>
<tr>
<th>هدایت الکتریکی (Ec, mmhos/cm)</th>
<th>زنوتیپ</th>
<th>SN (%)</th>
<th>Na (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardestan</td>
<td>4.3 bc</td>
<td>0.68 ab</td>
<td></td>
</tr>
<tr>
<td>خراسان</td>
<td>4.6 b</td>
<td>0.71 ab</td>
<td></td>
</tr>
<tr>
<td>Semnan</td>
<td>5.8 a</td>
<td>0.703 ab</td>
<td></td>
</tr>
<tr>
<td>کاشان</td>
<td>4.0 bcde</td>
<td>0.49 bc</td>
<td></td>
</tr>
<tr>
<td>نیشابور</td>
<td>3.8 cdef</td>
<td>0.443 cd</td>
<td></td>
</tr>
</tbody>
</table>

Means in each column followed by similar letters are not significantly different at the 0.05 probability level (Duncan Multiple Range Test).
محققان دیگر نیز وجود تفاوت‌های زنوتیبی شنبله را در میزان بیون P و K تحت شرایط نش شوری گزارش نموده‌اند (Archangi and Khodambashi, 2012). یافته‌های آزمایش‌های پیش‌بینی‌کننده خاک باعث تغییر نامحسوس و جزئی در میزان پتانسیل ساقه گردیده. به طوری که از نظر آماری اختلاف معنی‌داری بین محیط بدون نش و دارای نش و وجود نداشت (جدول 6). یافته‌ها با گزارش پژوهشگران دیگر مبنی بر کاهش میزان پتانسیل ساقه‌ها در گیاه شنبله در اثر افزایش سطح شوری (Hasni et al., 2009; Archangi and Khodambashi, 2012) تفاوت آن با توده‌های بومی دیگر در سطح احتمال 5 درصد معنی‌دار بود (جدول 11).

جدول 12- مقایسه میانگین اثر توده‌های بومی شنبله بر خصوصیات مورد مطالعه

<table>
<thead>
<tr>
<th>زنوتیب</th>
<th>P (%)</th>
<th>K (%)</th>
<th>K/Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>اردستان</td>
<td>0.35 b</td>
<td>3.7 d</td>
<td>6.1 b</td>
</tr>
<tr>
<td>خراسان</td>
<td>0.35 b</td>
<td>4.5 bc</td>
<td>15.5 ab</td>
</tr>
<tr>
<td>سمنان</td>
<td>0.42 a</td>
<td>5.3 a</td>
<td>6.9 b</td>
</tr>
<tr>
<td>کاشان</td>
<td>0.37 b</td>
<td>5.1 ab</td>
<td>10.2 ab</td>
</tr>
<tr>
<td>نیشابور</td>
<td>0.35 b</td>
<td>4.2 cd</td>
<td>8.8 ab</td>
</tr>
</tbody>
</table>

Means in each column followed by similar letters are not significantly different at the %5 probability level (Duncan Multiple Range Test).

میانگین‌هایی که در هر ستون دارای نماد مشترک می‌باشند، براساس آزمون چند دامنه دانک در سطح احتمال 1 درصد اختلاف معنی‌داری ندارند.

میانگین‌هایی که در هر ستون دارای نماد مشترک می‌باشند، براساس آزمون چند دامنه دانک در سطح احتمال 1 درصد اختلاف معنی‌داری ندارند.

وجود تفاوت‌های زنوتیبی در میزان سدیم ساقه تحت شرایط نش شوری گزارش نموده‌اند (Archangi and Khodambashi, 2012). یافته‌های پژوهشگران دیگر نیز گزارش نشده است (Archangi and Khodambashi, 2012)، که با نتایج بررسی حاضر مطابقت داشته و آن را تأیید می‌کند. در مقایسه میانگین اثرات متقابل مشاهده گردید که در
بررسی واکنش ژنوتیپ‌های بومی شنبلیله به هدایت‌های الکتریکی

محیط هدایت الکتریکی ۱/۵ میلی‌متر برشانی، مقدار سدیم ساچه در توده‌های بومی اردستان، خراسان و کاشان کاهش و در توده‌های سمنان و نیشابور افزایش می‌یابد (جدول ۱۱). به نظر پژوهشگران افزایش میزان سدیم بافت‌های گیاهی در محیط تنش اجتناب ناپذیر بوده و پایین نگهداشتن غلت سدیم در شرایط تنش، معیاری از تحمل برای زنوتیپ مورد نظر محسوب می‌شود (Tester and Davenport, ۲۰۰۳; Azari et al., ۲۰۱۲).

نسبت پتاسیم به سدیم ساچه: اثر ساده زنوتیپ بر نسبت پتاسیم به سدیم از نظر آماری معنی‌دار بود (جدول ۱۰). نتایج مقایسه میانگین نشان داد بیشترین مقدار این نسبت متعلق به توده بومی خراسان (۱/۵) و کمترین مقدار آن متعلق به توده بومی اردستان (۱/۴) بود (جدول ۱۲).

زنیب‌بندی زنوتیپ‌ها از روی صفات مورد مطالعه: نتایج مربوط به زنیب‌بندی زنوتیپ‌ها با استفاده از روش پیشنهادی پژوهشگران (Sarmadnia et al., ۱۹۸۸) از روی صفات مختلف مورد مطالعه در شرایط تنش شوری در جدول ۱۳ آمده است.

جدول ۱۳- زنیب‌بندی تحمال توده‌های بومی شنبلیله به افزایش هدایت الکتریکی هاک

<table>
<thead>
<tr>
<th>Znootype</th>
<th>Rank mean</th>
<th>Rank standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardestan</td>
<td>۳.۴</td>
<td>۱.۴۶</td>
</tr>
<tr>
<td>خراسان</td>
<td>۲.۴۷</td>
<td>۱.۱۴</td>
</tr>
<tr>
<td>Khorasen</td>
<td>۲.۷۶</td>
<td>۱.۳۱</td>
</tr>
<tr>
<td>سمنان</td>
<td>۱.۸۲</td>
<td>۱.۱۵</td>
</tr>
<tr>
<td>کاشان</td>
<td>۲.۴۷</td>
<td>۱.۳۸</td>
</tr>
<tr>
<td>Kashan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نیشابور</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

زنوتیپ‌هایی که در زمره‌ی میانگین رتبه هستند، افزایش متحمل‌ترین زنوتیپ به افزایش هدایت الکتریکی خاک می‌باشد.

Genotypes with the lowest average ranking are the most prolific genotype to increase the electrical conductivity of the soil.
نتایج نشان داد که توده‌های بومی شنبه‌بیل در مواجهه با افزایش میزان هیداتکتریکی خاک دارای رتبه‌های متفاوتی بودند و به بیان حاکی از وجود تفاوت در بین زنوتیپ‌های مورد مطالعه بود. نتایج حاصل از رتبه‌بندی نشان داد که توده بومی متعلق به منطقه کاشان با کمترین میانگین رتبه (۱/۵) تحت تأثیر توده‌های اکوتکتریکی خاک (شوري) و توده بومی اردن با بیشترین میانگین رتبه (۳/۴) حساس ترین توده شنبه‌بیل به افزایش هیداتکتریک خاک (شوري) بودند (جدول ۱۳). بر اساس نتایج پژوهش‌های قبلی، توده بومی کاشان در برابر نش تنها خشکی در مرحله چوپزار ۳۵ گزارش گردیده است (Sadeghzadeh) که نشان از وجود قابلیت‌های مناسب در این توده برای اصلاح و استفاده از آن در مناطقی با نش تن مکر بیاید. هیداتکتریکی بالای خاک و خشکی می‌باشد.

نتیجه‌گیری

شنبله‌بیل با مصارف مختلف از جمله بعنوان سبزی و گیاه دارویی در فرهنگ غذایی و دارویی جمعیت ناساک نشان دهنده است و در اغلب مناطق ایران مبادرت به کشت و کار آن می‌شود. قدمت کشت این گیاه در ایران و عدم وجود برنامه‌های اصلاحی در زمینه تولید ارگان‌های زنوتیپ‌های خالص شنبه‌بیل در کشور موجب شده است که توده‌های بومی مختلفی از این گیاه در مناطق مختلف مورد کشت و کار قرار گیرند. نتایج این پژوهش ضمن تأیید وجود تندبیل و نزدیکی بین توده‌های مورد مطالعه در پاسخ به سطوح مختلف هیداتکتریکی خاک از نظر صفتی چون تعداد غلاف در بوته، تعداد دانه در غلاف، وزن خشک ساقه، ارتفاع بوته و ... نشان داد که از نظر باسلامی و مقاومت به هدايت الکتریکی بالای خاک (شوري) نیز بین زنوتیپ‌های بومی اختلاف وجود دارد. بنابراین در مناطقی که شوری به عنوان عامل بزرگانده و محدودکننده محیط تولید شنبه‌بیل مطرح است، می‌توان مبادرت به انتخاب و کشت زنوتیپ‌هایی با درجه بالایی از تحمیل (مانند توده بومی کاشان در این پژوهش) نمود.

منابع

نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان 97

بررسی واکنش ژنوتیپ‌های بومی شنبلیله به هدایت‌های الکتریکی...