تأثیر تنش های خشکی و شوری بر برخی از متابولیتهای ثانویه گیاه دارویی رزماری (Rosmarinus officinalis)

رضا دهقانی بیدگلی

چکیده

مقدمه:

آبادی از تغییرات تنش بیشتر همیشه شده توسط گیاهان از اهمیت زیادی برخوردار است. این موضوع در مورد برخی از ترکیبات گیاهی که در ترش خواص انتی اکسیدانی بوده و در منابع سازمانی ترکیبات می‌گیرند، از اهمیت بیشتری برخوردار است. یکی از عوامل بارزترین جنبه‌های این تکنیک، کوئیتیت ترکیبات گیاهی می‌باشد، به طوری که، کیفیت این مواد به شدت تحت تاثیر تنش های محیطی از جمله شوری و خشکی قرار می‌گیرد.

مواد و روش‌ها:

به منظور سنجه تاثیر دو تنش خشکی و شوری بر ترکیبات فتوئی که جزء مهم‌ترین
مانولیتهای گیاهی می‌باشند، آزمایشی در قالب طرح کاملاً صادقی با سه تكرار در دو گروه مورد استفاده قرار گرفت که گروه گمانه‌گروه داشته و از اعمال تنش‌های مورد نظر، تهیه ترش کشته شدند. عصاره‌گیری به روش ماسراسین انجام گرفت و ترکیبات فتوئی با استفاده از دستگاه کروماتوگرافی مایع با کارایی بالا نانوگیری گردید.

نتایج:

نتایج نشان داد که تنش شوری و خشکی اثر معنی‌داری در میزان ترکیبات فتوئی از جمله α-pinene، camphor و linalool L α-terpinene α-pinene، camphene دارند. در تنش خشکی، مقدار pinene به ترتیب ۴۸، ۱۴۸، ۱۲۳، ۱۲۳، ۱۸۶ و ۷۹ درصد نسبت به شرایط بدون تنش افزایش نشان دادند. مقدار ترکیبات

*نویسنده مسئول: dehghanir@kashanu.ac.ir
تأثیر تنش‌های خشکی و شوری بر برخی از متابولیتهای ثانویه...

بررسی شده در اثر تنش شوری نیز تغییراتی نشان داد اما این تغییرات در مقایسه با تنش خشکی قبل توجه نیست. به‌طور مثلاً در تنش شوری مربوط به ترکیب 1,8-cineol 1,8-cineol 0,18 نیم‌دوز افزایش گیاهی داده شد. در صورتی چهار تنش نداشت.

نتیجه‌گیری: به‌طور کلی نتایج حاصل از آزمایش تنش داده که استفاده از تنش‌های محیطی با تنش ری، پارامترهای رشد تولید متابولیتهای ثانویه و محتوی فنولی باعث افزایش عملکرد این گیاه شد و راه‌های مناسب برای افزایش رشد مناسب و عملکرد گیاهی می‌باشد.

واژه‌های کلیدی: عصاره‌گیری، عامل محیطی، فنول، کرومتوگرام، HPLC

مقدمه

تنش‌های محیطی جزو مهم‌ترین عوامل کاهش عملکرد گیاهان به‌شمار می‌روند این در حالت است. در مورد برخی از گیاهان دارویی، استفاده از تنش‌های محیطی می‌تواند روشهایی برای افزایش عملکرد گیاهان باشد (Walpola and Arunakumara., 2017). عوامل محیطی از یک طرف باعث تغییراتی در رشد گیاهان دارویی و از طرف دیگر موجب تغییر در مقادیر و کیفیت مواد موجود آن‌ها تأثیر را بگذارند. گلیکوزیدها، استروئیدها و روغن‌های فرار (اساس‌ها) می‌گردد. عملکرد یک گیاه دارویی وقتی مفروض به‌صورت است که مقدار متابولیتهای اولیه و ثانویه آن به‌مدت مطلوب رشدی باشد. بنابراین، با مدیریت عوامل محیطی می‌توان به حداکثر محصول دست یافتن دی‌مزه و همکاران (2006). در تحقیقات خود، نشان دادند که تنش‌های محیطی عوامل کاهش عملکرد گیاهان را کاهش می‌دهند و از طرفی استرس خشکی می‌تواند باعث افزایش درصد روغن‌های ضروری کند. گیاهان دارویی شدند. زیرا در این حالت متابولیتهای بیشتری تولید شده و این مواد باعث جلوگیری از عمل اکسیداسیون در سلول می‌شوند. همچنین گزارشات فراوانی از انتقال پیلولزیکی و دارویی ترکیبات فنولی گیاهی این خانواده گیاهی وجود دارد که از جمله آن‌ها می‌توان به خواص آنتی‌اکسیدانی، ضدکلرو، ضدزیستی، ضدکلروسی، ضدالتهابی و غیره

اشتار کرد (2009). Demir kaya et al., 2006. در تحقیقات خود نشان دادند که تنش‌های محیطی عوامل کاهش عملکرد گیاهان را کاهش می‌دهند و از طرفی استرس خشکی می‌تواند باعث افزایش درصد روغن‌های ضروری کند. گیاهان دارویی شدند. زیرا در این حالت متابولیتهای بیشتری تولید شده و این مواد باعث جلوگیری از عمل اکسیداسیون در سلول می‌شوند. همچنین گزارشات فراوانی از انتقال پیلولزیکی و دارویی ترکیبات فنولی گیاهی این خانواده گیاهی وجود دارد که از جمله آن‌ها می‌توان به خواص آنتی‌اکسیدانی، ضدکلرو، ضدزیستی، ضدکلروسی، ضدالتهابی و غیره

Baidez et al., 2007; Huang et al., 2009.)
نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان ۹۷

زیادی بر افزایش چند برای ضروری متابولیتهای نانویه تحت تنش‌های محیطی وجود دارد. اما برخی تحقیقات نیز نشان می‌دهد که این تأثیر همیشه نیست و در مواردی حتی کاهش میزان متابولیتهای تالویه تحت شرایط محیطی دیده می‌شود (Walpola and Arunakumara, 2017). دو کلیدی (Ramakrishna and Ravishankar, 2011; گروهی گیاهی از میان نهادهای تالویه گردید از مهم‌ترین اهداف در تحقیقات مربوط به کشت گیاهان دارویی می‌باشد (Jaafar et al., 2012).

گیاه دارویی اکثربه مورد نیاز عمومی رزماری و نام علمی Rosmarinus officinalis L. از نظر تولید روغن‌های ضروری گیاهان دارویی می‌تواند تحت تنش‌های محیطی قرار گیرد. تحقیقاتی نشان دادند (Swamy et al., 2008; Walters et al., 2016; Tarraf and Ibrahim, 1999) که با کاهش تنش، رشد گیاه به‌طور معمولی افزایش یافته و با کاهش تنش، محیطی تور برای رشد ضروری به‌طور معمولی افزایش یافته. افرادی که میزان روغن‌های ضروری رزماری با کاهش تنش‌های محیطی افزایش می‌یابند، در تولید ماده‌های ضروری افزایش یافته و به ترتیب نتایج اشخاصی که به‌طور معمولی محیطی تنش‌های محیطی دارند. این رشد و تولید روغن‌های ضروری گیاهان دارویی می‌تواند تحت تنش‌های محیطی قرار گیرد.

مواد و روش‌ها
این تحقیق در خردادماه سال ۱۳۹۶ در شرایط گلخانه (کشت گیاهان و اعمال نانویه) و از امیشگاه (نانویه گیاه‌های تکانس فنونی) دانشگاه کاشان در قالب طرح کامل تصادفی با سه نمونه بر روی گیاه رزماری اجرا گردید. همه گیاه‌های نهال‌های ۱۰ سانتی‌متری استفاده گردید. تیرهای اول مورد
تأثیر تنش های خشکی و شوری بر برخی از متابولیت‌های نتیجه‌گیری‌شده

استفاده در این تحقیق شامل اعمال تنش خشکی بهصورت یک یا باره زمانی عدم آبیاری تا ظهور علائم تنش (ده روز) و تیمار دوم نش شوری با استفاده از محلول نمک Nac گلیکی با غلظت 400 ppm به‌همراه تیمار سوم شاهد (آبیاری معمولی و بدون تنش) بودند. در این تحقیق از گلدان‌هایی با قطر دهانه ۲۰ سانتی‌متر، انتفاع ۲۰ سانتی‌متر با ظرفیت ۶ کیلوگرم خاک استفاده کردند. پس از انجام آزمایش، خاک مورد استفاده در آزمایشگاه آب و خاک دانشکده منابع طبیعی و علوم زمین دانشگاه کاشان مورد تجزیه قرار گرفت (جدول ۱).

جدول ۱- ویژگی‌های فیزیکی و شیمیایی خاک مورد آزمایش

<table>
<thead>
<tr>
<th>свойیت</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>رطوبت ظرفیت مزرعهای (درصد وزن خشک)</td>
<td>۲۲.۸%</td>
</tr>
<tr>
<td>وزن مخصوص ظاهری (گرم بر سانتی‌متر مکعب)</td>
<td>۱.۵ (g/cm³)</td>
</tr>
<tr>
<td>اسیدیت خاک</td>
<td>۷.۴۳</td>
</tr>
<tr>
<td>ترشح الکتریکی</td>
<td>۱.۳ (dS/m²)</td>
</tr>
<tr>
<td>فاصله</td>
<td>لوئی- رسی</td>
</tr>
<tr>
<td>سیستم صرب</td>
<td>Loam-Clay</td>
</tr>
</tbody>
</table>

برای آمادسازی نمونه‌های گیاهی جهت عصاره‌گیری، ابتدا اندازه‌گیری در دمای اتاق و دور از نور خورشید خشک گردیدند. سپس ۱/۰ گرم از ماده خشک ظاهری که به خوبی در هاون خرد شده بود توسط ۲۰ میلی‌لیتر محلول ۲۰ درصد تحت ظرفیت گیاهی به روش ماسپرسیون قرار گرفت (Aliabadi-Farhani et al., 2009). فرآیند استخراج به مدت ۱۵۰ دقیقه در دمای ۲۵ درجه سانتی‌گراد بر روی شیشه‌ای ادامه یافت. در نهایت پس از تکمیل فرآیند عصاره‌گیری، محلول با استفاده از کاغذفای و سپس از سانتریفیژور گردید (مدت ۵ دقیقه با سرعت ۴۰۰ دور بر دقیقه) محلول عصاره به‌صورت کالاً صاف و شفاف به‌دست آمد. این محلول با استفاده از دستگاه تبخیر جنوبی جرخان خشک گردید و متناسب با وزن عصاره به‌دست آمد. از هر نمونه محلول میلی‌لیتری استوک (HPLC) (ادرانه‌گیری ترکیبات فنولی) با استفاده از دستگاه HPLC (مدل KNAUER-Germany) برای انتزاع ۲۰ میلی‌لیتر از عصاره تهیه شده به دست‌آمد (Aleksandra et al., 2011).
نتیجه تحقیقات گزارشی اکوفیزیولوژی گیاهی / دوره پنجم، شماره اول، بهار و تابستان ۹۷

توزیع گرید. این دستگاه مجهز به دنکتور UV مدل ۵۰۰ و ستوون کریستالی (Vertex) C۱۸ و ۱۸ است. درای اندازه دراز ۸ میکرومتر، طول ۲۵۰ میلی‌متر و قطر ۴ میلی‌متر بود. شستشوی ستوون با استفاده از آب حاوی ۱/۲ درصد اسید فلوروئید و ۰/۲ درصد اسید سولفوریک به‌وجود آورنده کریستال A و مثانول حاوی ۲۰۰ درصد اسید فلوروئید و ۲ درصد سولفانیل به‌وجود آورنده کریستال B با هدف از جزایر دیواره‌های صورت‌گرایان بدون داشتن گرفتگی. نحوه تغییر درصد حلال‌ها در طی فراآیند آنالیز با جزئیات کامل در جدول ۲ ارائه شده است.

جدول ۲- خصوصیات ستوون HPLC

<table>
<thead>
<tr>
<th>زمان (دستگرد)</th>
<th>محلول A (درصد)</th>
<th>محلول B (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>۸۰</td>
<td>۲۰</td>
</tr>
<tr>
<td>5-10</td>
<td>۷۵-۸۰</td>
<td>۲۵-۲۰</td>
</tr>
<tr>
<td>10-15</td>
<td>۷۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>15-20</td>
<td>۵۰-۵۵</td>
<td>۵۰-۴۵</td>
</tr>
<tr>
<td>20-25</td>
<td>۵۵</td>
<td>۴۵</td>
</tr>
<tr>
<td>25-30</td>
<td>۱۵-۶۵</td>
<td>۷۵-۳۵</td>
</tr>
<tr>
<td>30-35</td>
<td>۱۰</td>
<td>۹۰</td>
</tr>
<tr>
<td>35-40</td>
<td>۱۰-۸۰</td>
<td>۹۰-۲۰</td>
</tr>
<tr>
<td>40-45</td>
<td>۸۰</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

منابع:
- camphene، linalool، L-α-terpinene
- α-pinene
- 1,8-cineol و camphor
- تیتر: علمی، اکستراکس Rosmarinus officinalis
- تیتر: فیزیولوژی گیاهی
- ژنتیک و جنگل‌پردازی
- جهت تعیین ترکیبات عصاره گیاه دارویی رمانی
- Table 2- Characteristics of the HPLC column to determine the compounds of Rosmarinus officinalis extract

Aldaluz et al., 2011

MSTATC و Excel
تأثیر تنش های خشکی و شوری بر برخی از متابولیت های ثانویه...

نتایج و بحث
گرماناگرام مربوط به عصاره گیاه زمزمی تحت تنش خشکی در شکل 1 آورده شده است که در آن پیک مربوط به هر کدام از ترکیبات مورد بررسی مشخص شده است.

شکل 1- گرماناگرام مربوط به آنانزیس عصاره های گیاه زمزمی تحت تنش خشکی

نتایج تجزیه و اریان نشان داد که تنش های خشکی و شوری اثر معنی داری در سطح احتمال یک درصد بر میزان در گیاه زمزمی داشته‌اند (جدول 3). با اعمال تنش خشکی میزان α-pinene در گیاه α-pinene درصد نسبت به شاخص افزایش یافته، به طوری که بیشترین مقدار (α-pinene 42 درصد نسبت به شاخص افزایش یافته) به میزان گرم ماده خشک گیاه در تنش خشکی و کمترین میزان آن (24 میلی گرم بر گرم ماده خشک گیاه) در شرایط تنش شوری و α-pinene تیمار شاهد مشاهده گردید (شکل 2). مطالعه شکل 2، بین میزان تیمار شاهد در تیمار شوری بیشتر از تیمار شاهد α-pinene شاهم نظارت معنی داری مشاهده نگردید، ولی میزان α-pinene در تیمار شوری به مدار تیمار مشاهده شاهم بود.

α-terpinene نتایج حاصل از این تحقیق نشان داد که اثر تنش های خشکی و شوری روی میزان در گیاه زمزمی معنی دار می‌باشد (جدول 4). همانطوری که در شکل 3 مشاهده می‌شد، این اختلاف‌ها به قدری زیاد بود که تیمارها در بر گروه مختلف قرار گرفتند، به طوری که بیشترین و کمترین تیمار شاهد در تنش خشکی و تیمار شاهد در تنش شوری به‌دست آمد. با اعمال تنش خشکی میزان α-terpinene درصد نسبت به میزان گرم ماده خشک گیاه 148 درصد نسبت به میزان α-terpinene 42 میلی گرم بر گرم ماده خشک گیاه) درصد نسبت به میزان α-terpinene و شاهم در تیمار شاهد افزایش یافته (شکل 3).
جدول ۳- تجزیه و تحلیل (MS) ترکیبات عصاره گیاه زمزم در تیمارهای شاهد، شوری و خشکی

<table>
<thead>
<tr>
<th>S.O.V.</th>
<th>درجه آزادی DF</th>
<th>α-Pinene</th>
<th>α-Terpinene</th>
<th>Camphene</th>
<th>Linalool L</th>
<th>Camphor</th>
<th>1,8-Cineole</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیمار</td>
<td>۲</td>
<td>۱۲.۵۰**</td>
<td>۲.۴۱**</td>
<td>۴.۵**</td>
<td>۱۲.۱۰**</td>
<td>۶.۷**</td>
<td>۰.۲۷**</td>
</tr>
<tr>
<td>شمای آزمایش</td>
<td>۶</td>
<td>۰.۷۰</td>
<td>۲.۸۰</td>
<td>۰.۰۲</td>
<td>۰.۱۸</td>
<td>۰.۲۰</td>
<td>۰.۰۱۲</td>
</tr>
<tr>
<td>ضریب تغییرات CV (%)</td>
<td>۶.۵۰</td>
<td>۴.۱</td>
<td>۹.۶</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۶</td>
<td></td>
</tr>
</tbody>
</table>

ns, * and **: non-significant difference, significant difference at the levels of five and one percent probability, respectively.
تأثیر تنش‌های خشکی و شوری بر برخی از متابولیت‌های ثانویه

شکل ۲- مقایسه میزان ایزوپینئن در گیاه رزمایر تحت تبیان‌های خشکی، شوری و کنترل

فیگور ۲- مقایسه میزان پنئنی رزمارینوس تحت کمبود آبی، نیازی و معیار کنترل

شکل ۳- مقایسه میزان α-ترپینئن در گیاه رزمایر تحت تبیان‌های خشکی، شوری و کنترل

فیگور ۳- مقایسه میزان α-ترپینئن رزمارینوس تحت کمبود آبی، نیازی و معیار کنترل
نتایج نشان داد که بین تیمارها مختلف از نظر میزان camphene اختلاف معنی‌داری وجود دارد (جدول ۳). مقایسه میانگین تیمارها نشان داد که تنش خشکی و کمترین مقدار camphor (جدول ۲) مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته. به طوری که بیشترین مقدار camphor (جدول ۳) مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته. به طوری که بیشترین مقدار camphor (جدول ۲) مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته.

![Figure 4- Mean comparisons of camphene content in Rosmarinus officinalis under drought, salinity and control treatments](image)

(Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test))

نشان داد که بین تیمارها مختلف از نظر میزان camphor اختلاف معنی‌داری وجود دارد (جدول ۳). مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته. به طریکی که بیشترین مقدار camphor (جدول ۲) مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته. به طریکی که بیشترین مقدار camphor (جدول ۳) مقایسه میانگین تیمارها نشان داد که نشان خشکی اختلاف معنی‌داری با نشان شوری و تیمار شاهد داشته.
تأثیر تنش‌های خشکی و شوری بر برخی از متابولیتهای ثانویه...

نتایج حاصل از این تحقیق نشان داد که اعمال تیمارهای مختلف بر میزان camphor در گیاه رزماری تحت تنش‌های خشکی، شوری و شاد camphor مقایسه میانگین میزان در گیاه رزماری تحت تنش‌های خشکی، شوری و شاد camphor نشان داد که تنش خشکی اختلاف معنی‌داری با تنش شوری و تیمار شاهد داشت. به‌طوری که بیشترین مقدار میلی‌گرم بر گرم ماده خشک گیاه در تنش شوری و کمترین مقدار آن (50/16) میلی‌گرم بر گرم ماده خشک گیاه در تنش شاهد مشاهده گردید (شکل 5).

تجزیه و اریاباس داده‌ها نشان داد که تیمارهای خشکی و شوری و شاد میزان 1,8-cineol در رزماری تأثیر معنی‌دار دارد (جدول 3). نتایج مقایسه میانگین نشان داد که بیشترین و کمترین مقدار 1,8-cineol به‌ترتیب در تنش شوری و تنش خشکی با میزان 24/5 و 19/1 میلی‌گرم بر گرم ماده خشک گیاه بود (شکل 7). میزان افزایش 1,8-cineol در تنش شوری نسبت به شرایط بدون تنش 28 درصد بود (شکل 7).

شکل 5 - مقایسه میانگین میزان camphor در گیاه رزماری تحت تنش‌های خشکی، شوری و شاد camphor میزان camphor در گیاه رزماری تحت تنش‌های خشکی، شوری و شاد camphor نشان داد که تنش خشکی اختلاف معنی‌داری با تنش شوری و تیمار شاهد داشت. به‌طوری که بیشترین مقدار میلی‌گرم بر گرم ماده خشک گیاه در تنش شوری و کمترین مقدار آن (50/16) میلی‌گرم بر گرم ماده خشک گیاه در تنش شاهد مشاهده گردید (شکل 5).

نتایج حاصل از این تحقیق نشان داد که اعمال تیمارهای مختلف بر میزان linalool L رزماری تأثیر معنی‌دار داشته‌اند (جدول 3). مقایسه میانگین تیمارهای نشان داد که تنش خشکی اختلاف معنی‌داری با تنش شوری و تیمار شاهد داشت. به‌طوری که بیشترین مقدار linalool L میلی‌گرم بر گرم ماده خشک گیاه در تنش شوری و کمترین مقدار آن (50/16) میلی‌گرم بر گرم ماده خشک گیاه در تنش شاهد مشاهده گردید (شکل 5).

نتایج حاصل از این تحقیق نشان داد که اعمال تیمارهای مختلف بر میزان 1,8-cineol در رزماری تأثیر معنی‌دار دارد (جدول 3). نتایج مقایسه میانگین نشان داد که بیشترین و کمترین مقدار 1,8-cineol به‌ترتیب در تنش شوری و تنش خشکی با میزان 24/5 و 19/1 میلی‌گرم بر گرم ماده خشک گیاه بود (شکل 7). میزان افزایش 1,8-cineol در تنش شوری نسبت به شرایط بدون تنش 28 درصد بود (شکل 7).
Figure 6- Mean comparisons of linalool L content in *Rosmarinus officinalis* under drought, salinity and control treatments
(Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test))

Figure 7- Mean comparisons of 1,8-cineol content in *Rosmarinus officinalis* under drought, salinity and control treatments
(Means in each column followed by similar letters are not significantly different at the %5 probability level (LSD Test))
تأثیر نشانه‌های خشکی و شوری بر برخی از منابع‌های تانویه...

نتایج این تحقیق نشان داد که تنش آبی بر ترکیبات مورد مطالعه گیاه زمردی اثر مثبتی دارد و linalool L-α-terpinene α-pinene camphene و به طوری که در اثر تنش خشکی میزان 1,8-cineol 1.8 تحت تاثیر تنش خشکی به مرحله نداشت و camphor افزایش یافتند؛ اما ترکیب α-pinene به میزان 5/5 هر واحد به میزان 8/0 رشد دیگر بود که نتایج این آزمایش دانه گیاه Dunford and Aliabadi-Farhani et al., 2001 (Ghorbanali et al., 2000) و Farhani et al., 2017 و مزره (Vazquez, 2000) 90 مورد، است. مطالعات دارد.

آرا و همکاران (2009) در بررسی اثر چهار سطح خشکی بر گیاه زمردی مشاهده کردند که بالاترین درصد نسبي ترکیب α-pinene در تیمار فاصله آبایی 10 روز حاصل شده است. نتایج حاصل از این تحقیق در مورد میزان 1,8-cineol (Ozturk et al., 2004) از آن‌ها و همکاران که با گزارش از محققین گزارش نمودند که به دلیل کاهش رشد در اثر رفت‌و‌آمده گیاه، تنها گربن در طی فتوسنتز و یک مولولیت‌های نانویه می‌شود (Turtola et al., 2003) و بیبستی منابع‌های نقده گیاهان در شرایط تنش به منظور جلوگیری از تکسیداسیون سلولی است (Aliabadi-Farhani et al., 2009).

از آنجایی که در میزان اساس با افزایش همراه است. در سایر تحقیقاتی که در تنش شوری صورت گرفته است اثرات نامناسب تنش شوری در گازه‌ها به‌طور معمول (Riaze et al., 2007) ماهه در میان Ashraf and Akhtar, 2004) می‌شود. Hornok, 1996 میزان اساس در رازان (2004) نسبت گروهی بر روی گیاههای نما نوعی که با یک مولولیت می‌شود (Ashraf and Oorooj, 2006) آبیاری شده بود مشاهده شد که آب شوری گونه‌ها رشد و تغییر تشكل اساس در گیاه شده است (El-Keltawi and Croteau, 1986). در تحقیق مشابه در بررسی اثر شوری آب ابیاری را بر روی گیاهان مزردشون و مشخص شده که شوری آب باعث کاهش 21 درصدی عملکرد اساس می‌شود (El-Keltawi and Croteau, 1987) و غلظت کل اساس را کاهش می‌دهد (Udagawa et al., 1995; Arazmjo et al., 2017; Walters et al., 2016). تمام این تحقیقات می‌آید این مطلب هستند که تنش‌های مختلف تأثیر چشمگیر بر روز ترکیبات گیاهی خصوصاً منابع‌های تانویه دارد که به نتایج تحقیق حاضر مطالعات دارد.
نتیجه‌گیری

هرچند گیاهان در شرایط تنش ناشی از افزایش تواناها توانای بروز تغییرات جدی در ترکیبات گیاهی می‌شود و پس از گذشت چند روز ترکیبات گیاهی به‌شدت تحت تأثیر تنش‌های اعمال شده قرار می‌گیرند و از نظر کمی و کیفی با شرایط بدون نش شتاب‌های قابل ملاحظه‌ای را نشان می‌دهند. آنچه در این تحقیق نیز مشاهده شد نیز این مطلب را تایید می‌کند. کاهش تولید متابولیت‌های گیاهی در نتیجه تنش‌های محیطی نظر خشکی و شوری ممکن است ناشی از اثر زیان‌آور تنش بر پلک و عملکرد پیکر روی‌های گیاه باشد، به عبارت دیگر با کاهش عملکرد پیکر روندی گیاه رزمایی در شرایط تنش عملکرد گیاه از نظر تولید متابولیت‌های اولیه و نتیجتاً نظر اساسی‌ها نیز کاهش می‌یابد. اگرچه در برخی از گیاهان عملکرد پیکر روشی و تولید متابولیت‌های گیاهی همسو باشد و نشان می‌دهد متابولیت‌های محیطی در این دسته از گیاهان اهمیت ویژه‌ای دارد. اگرچه ترکیبات مختلف‌گیاهی عکس عمل‌های مختلفی نسبت به تنش‌های مختلف از خود نشان می‌دهند؛ اما به‌عنوان نتیجه‌گیری پایان‌هایی از این تحقیق می‌توان گفت که با ایجاد تنش‌های محیطی افزایش کمی متابولیت‌های ناتویه برای برخی از گیاهان فراهم می‌شود، که در تحقیق حاضر اثر تنش خشکی بر ترکیبات گیاه رزمایی بیشتر از تنش شوری بوده است.

منابع

تأثیر تنش‌های خشکی و شوری بر برخی از متابولیت‌های ثانویه

